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Abstract

Recent advances in the understanding of the structure, dynamics, and geometry of laminar premixed flames under the
influence of stretch, as manifested by aerodynamic straining, flame curvature, and flame/flow unsteadiness, are reviewed
and presented in a tutorial manner. The discussion first treats the flame as a structureless surface which propagates into the
fresh mixture with a constant velocity—the laminar flame speed, and the phenomena of cusp formation and volumetric burning
rate augmentation through flame wrinkling are demonstrated. It is then shown that by considering the effects of stretch on the
flame structure, and by allowing for mixture nonequidiffusion, the flame responses, especially the flame speed, can be
quantitatively as well as qualitatively modified. By using the stretch-affected flame speed, we then describe the phenomena
of cusp broadening, of tip opening of the Bunsen flame, and of the intrinsic hydrodynamic, body-force and diffusional—thermal
modes of flamefront cellular instabilities. Additional topics covered include forced and intrinsic oscillatory flame dynamics, and
quantitative extraction of the global flame parameters represented by the activation energy, the Markstein length, and the Lewis
number.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The structure and propagation of laminar premixed
flames are governed by convection, diffusion, and chemical
reactions that are frequently characterized by large activa-
tion energies and high heat release rates. Early studies on
premixed flames have pursued along two directions. The
first is aerodynamic in nature, treating the flame as a struc-
tureless surface which releases a certain amount of heat
according to the mixture composition, propagates with a
given, constant, speed, and is passively convected by the
flow field in which it is embedded. Transport and chemistry
are absent. The second is the study of the flame structure,
allowing for transport and chemical processes to various
degrees of detail, but keeping the description of aerody-
namics to the simplest level. Frequently the study is based
on the idealized situation of the steady propagation of the
one-dimensional planar flame in the doubly infinite domain.
As such, there is basically no aerodynamics in the problem.
Such analyses usually yield the speed with which the flame
propagates, which is the constant flame speed needed by the
aerodynamic analyses.

However, it was also recognized quite early that the char-
acteristics of premixed flames could be profoundly affected
by aerodynamics. For example, the phenomena of flame
extinction, stabilization, and blowoff cannot be described
if the flame had a constant flame speed. Furthermore, a
constant flame speed would also fail to describe the curva-
ture variation over the surface of a conventional closed-
tipped Bunsen flame. In response of such concerns,
Karlovitz [1] proposed the concept of flame stretch to
describe flame extinction in nonuniform flow fields, while
Markstein [2] allowed the flame speed to vary with the flame
curvature in order to describe the observed flamefront cellu-
lar instability phenomena.

Over the past 25 years, since the inception of PECS,

significant progress has been made in flame theory in
general, and the structure and dynamics of stretched flame
in particular [3–6]. For example, Karlovitz’s definition of
flame stretch due to flow nonuniformity has been general-
ized to include flame curvature and flame/flow unsteadiness
[7–9], rigorous asymptotic analyses have been conducted
for stretched flames [10–14], the strong coupling between
diffusion and stretch has been identified, and systematic
formulation to describe the dynamics of flame surfaces has
been initiated [4,15]. Perhaps equally important are the
results from the parallel experimental [16–23] and compu-
tational [23–26] investigations of stretched flames, pro-
viding the needed scrutiny, guidance, and verification of
the analytically predicted phenomena. Thus most of the
fundamental framework towards an eventual mature
description of stretched flames are now in place.

There are two objectives for the present review. First, we
shall update an earlier review by the first author on the
dynamics of stretched flames [5]. Notable new develop-
ments are the improved interpretations of the various
stretched flame phenomena, additional computational
results made possible with the recent advances in computa-
tional combustion, the systematic description of the
dynamics, geometry, and stability of flame surfaces, and
the quantitative extraction of global flame parameters useful
for the simulation of such complex phenomena as turbulent
flames. The second objective is to provide tutorial material
adaptable for graduate-level instruction on the subject
matters covered. Being mindful of the latter objective,
some of the key results are derived, instead of quoted,
such that the underlying physics can be clearly
exposed. The emphasis here, however, is on the physical
insight and phenomenology, rather than mathematical
manipulation.

In the next section we shall phenomenologically describe
the structure of the one-dimensional and three-dimensional

C.K. Law, C.J. Sung / Progress in Energy and Combustion Science 26 (2000) 459–505460



flames. In Section 3 the dynamics of structureless stretched
flame surfaces in hydrodynamic flow fields are discussed.
The phenomena of cusp formation and burning rate augmen-
tation through flame wrinkling are analyzed. In Sections 4–
6 the influences of stretch on the flame structure and
response are described and compared with experimental
and computational results. A rational approach towards
quantitative extraction of global flame parameters and quan-
titative description of the global flame responses to stretch
rate variations are presented. In Section 7 we integrate
results from the flame structure analysis to the dynamics
of flame surfaces through the model problems of cusp broad-
ening and the configurations of Bunsen flames. In Section 8
a unified analysis of the hydrodynamic, body-force, and
diffusional–thermal flamefront cellular instabilities is
presented, while in Section 9 the unsteady flame dynamics,

as a result of either forced oscillation or intrinsic diffu-
sional–thermal pulsating instability, are described. Most
of the discussions on the dynamics and geometry of flame
surfaces in the above topics are conducted via theG-equa-
tion formulation, whereG, a constant, is a level surface in a
flow field. The review closes with a discussion on some
research problems and issues, in Section 10.

2. Qualitative flame structure

2.1. The one-dimensional flame

We consider the steady, adiabatic propagation of a planar
flame into a combustible mixture with velocityso

u in the
doubly infinite domain of2∞ , x , ∞: Designating the
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Fig. 1. Structure of the adiabatic, one-dimensional, freely propagating planar premixed flame at increasingly detailed levels of description: (a)
hydrodynamic level; (b) transport level; and (c) reaction level.



unburnt and burnt states of the mixture far upstream and
downstream of the nonequilibrium region of reaction and
diffusion by the subscripts u and b, respectively, in the
flame-stationary frame (Fig. 1a) the upstream mixture
approaches the flame with velocityuo

u � so
u and temperature

Tu; and leaves the flame with velocityuo
b � so

b and tempera-
ture To

b : If we assume that the mixture is sufficiently off-
stoichiometric such that the reaction is governed by the mass
fraction Yu of the deficient reactant, then a one-reactant
reaction described by Reactant! Products can be used.
The superscript “o” is used to designate this particular
flame.

The flame structure can be considered at three levels of
detail. At the hydrodynamic level of the Rankin–Hugoniot
relations, the flame is simply an interface separating two
thermodynamic states of unburnt and burnt gases related
by overall conservations of mass and energy. At this flame
surface the temperature and the reactant concentration
change discontinuously fromTu to To

b ; and fromYu to Yo
b �

0; respectively (Fig. 1a). The states of the unburnt and burnt
gases are in complete thermodynamic equilibrium.

At the next, more detailed, transport-dominated level of
description, the flame sheet of Fig. 1a is expanded to reveal a
so-called preheat zone of characteristic thickness`o

D and
dominated by heat and mass diffusion, as shown in Fig.
1b. Here as the mixture approaches the flame, it is gradually
heated up by the heat conducted forward from the chemical
heat release region, resulting in a continuously increasing
temperature profile untilTo

b is reached. The profile is not
linear because of the presence of convective transport. The
continuous heating of the mixture will eventually lead to its
ignition and subsequent reaction. Since combustible
mixtures of interest to combustion are characterized by
large activation energies, we expect that the reaction be
activated only when the gas temperature is close to its maxi-
mum value. Furthermore, once reaction is initiated, it is
completed rapidly as the deficient reactant is depleted.
Thus at this transport-dominated level, the reaction
zone can be considered to be concentrated at an inter-
face—a reaction sheet, which serves as a source of heat
and a sink for the reactant. At this surface the tempera-
ture and reactant concentration assumes their respective
burnt values in the downstream, while their slopes
change discontinuously.

Vanishing of the reactant concentration at the reaction
sheet establishes a concentration gradient in the preheat
zone. Thus the reactant concentration decreases continu-
ously in the preheat zone. Furthermore, for mixtures
whose Lewis number,Le, is close to unity, the similar values
of the heat and mass diffusivities imply that the rate of
temperature increase should be similar to that of concentra-
tion decrease; Lewis number is defined as the ratio of
thermal diffusivity to a representative mass diffusivity of
the mixture. ForLe� 1 mixtures, the two profiles, when
properly normalized, should span the same width (Fig.
1b). ForLe sufficiently deviating from unity, however, the

thermal and concentration thicknesses will necessarily be
very different.

At the third, and most detailed level of flame description,
the reaction sheet is expanded to reveal the reaction rate
profile (Fig. 1c), which has a characteristic thickness`o

R.
The reaction rate is a highly peaked function, consisting of a
rapidly increasing portion due to activation of the reaction,
followed by a rapidly decreasing portion because of the
depletion of the reactant. Since this reaction zone is much
thinner than the preheat zone, we also expect that in this
zone diffusion, which is a second-order transport process,
dominates over convection, which is a first-order transport
process.

The one-dimensional flame structure can therefore be
considered to consist of two distinct zones, namely the
preheat zone in which convection and diffusion dominate
and balance, and the reaction zone in which reaction and
diffusion balance. Sincè o

R p `o
D; the entire flame thick-

ness representing the nonequilibrium processes of reaction
and diffusion can be basically identified as`o

D: Across this
flame, the overall conservation of mass and energy holds.
Because of the low subsonic nature of the flame propaga-
tion, momentum conservation can frequently be represented
by the simple condition of isobaricity.

Thus, from continuity, d�ru�=dx� 0; we have

f o � ru� ruuo
u � ro

buo
b �1�

for the overall mass conservation, wherer is the density and
f o the constant mass flux, which we shall call the laminar
burning flux. Eq. (1) demonstrates that the fundamental
flame propagation parameter is the laminar burning fluxf o

instead of the propagation speeduo
u; or so

u; by itself. This is a
parameter of particular interest in studies of laminar flame
propagation because it contains the basic information on the
reactivity, diffusivity, and exothermicity of the mixture.

For energy conservation across the flame, we note that as
all the deficient reactant is consumed, and because the
system is adiabatic, for constant specific heatcp we have

cp�To
b 2 Tu� � qcYu; �2�

whereqc is the chemical heat release per unit mass of fuel
consumed. Eq. (2) simply states that all the chemical heat
liberated is used to heat the incoming gas. Therefore the
downstream temperatureTo

b is just the adiabatic flame
temperatureTad.

In order to determinef o
; we need to consider the non-

equilibrium processes of diffusion and reaction occurring
within the flame structure. Since the reaction and diffusion
balance in the reaction zone in general, and recognizing that
the reaction is represented by a characteristic reaction time
to

R , �wo
b=r

o
b�21

; wherewo
b is a characteristic reaction rate

evaluated at the flame temperatureTo
b ; while diffusion is

represented by the diffusivity�l=cp�b=ro
b; where l is

the thermal conduction coefficient, the characteristic
propagation speed of the thin reaction zone is simplyso

b ,
��l=cp�b=�to

Rr
o
b��1=2 � ��l=cp�bwo

b�1=2=ro
b based on dimensional
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considerations. Thus we have

� f o�2 � � f o
b �2 � �ro

bso
b�2 , �l=cp�bwo

b: �3�

From to
R and �l=cp�b=ro

b we can also form a characteristic
length scale, which is the thickness of the reaction zone, as
�`o

R�2 , to
R�l=cp�b=ro

b; or

�`o
R�2 , �l=cp�b=wo

b: �4�

Eqs. (3) and (4) show that the laminar flame responses
depend on the flame kinetics through the characteristic reac-
tion rate wo

b; and on the transport processes through the
density-weighted transport coefficient�l=cp�b:

Recognizing thatwo
b , exp�2Ta=T

o
b�; whereTa � Ea=R is

the activation temperature,Ea the activation energy, andR
the universal gas constant, that`o

R and`o
D can be approxi-

mately related through the temperature variations across the
reaction and preheat zones,�`o

R=`
o
D� � DTR=�To

b 2 Tu�; and
that the characteristic temperature change across the reac-
tion zone can be estimated byDTR , �w=�dw=dT��To

b
; `o

D can
be related tò o

R through

�`o
R=`

o
D� ,

�To
b�2

�To
b 2 Tu�Ta

� eo
: �5�

In Eq. (5) we have defined a parametereo
; which basically

compares the thermal energy available for the reaction
�,To

b� to the activation energy�,Ta� of the reaction.
Furthermore, sinceTa q To

b ; we have eo
p 1 provided

that the heat release is substantial�To
b q Tu�; which is

usually the situation. The inverse ofeo is the Zeldovich
number, Ze. We have therefore obtained the order-of-
magnitude estimates forf o

; `o
R and`o

D.
Detailed derivations off o with non-unityLe, using either

the rigorous activation energy asymptotic analysis, or less
rigorous methods such as that of Frank-Kamenetskii, or the
control volume analysis [14] which we shall use later in the
study of stretched flames, yield a similar, but more detailed

expression

f o � eo�Le�l=cp�BC exp�2Ta=T
o
b��1=2 �6�

whereBC is a collision frequency having the unit (gm/cm3/s).
Eq. (6) shows thatf o ,

���
Le
p

for non-unityLe mixtures.
Furthermore, ifLe ± 1; then instead of using a single diffu-
sion length`o

D; we also need to distinguish the thermal
diffusion length `o

T from the mass diffusion length̀ o
M.

From the control volume analysis we have

�`o
T=`

o
M� � Le: �7�

2.2. The wrinkled flame

It is clear that practical flames do not conform to the
idealized planar configuration discussed earlier. Instead
they can be wrinkled and unsteady, and can also exist in
flow fields that are nonuniform and unsteady. It is therefore
reasonable to expect that the various flame responses, such
as the burning rate and thickness, can be quantitatively and
qualitatively affected by these so-called stretch effects.

The influence of stretch on the flame response can be
discussed based on the scales as well as the tangential and
normal components of the flow field at the flame. Let us first
consider stretch at the hydrodynamic scale (Fig. 2a). Here,
analogous to the situation of Fig. 1a, diffusion and reaction
are not resolved and the entire flame is considered to
collapse into a flame sheet, with̀D � 0: The flame propa-
gates into the fresh mixture with a local propagation speed,
which is normal to the flame surface and can also differ from
so
u. The presence of stretch, through the tangential velocity

gradient at the flame, changes the flame surface areaA and
consequently the volumetric burning ratefuA. Depending on
whether the local tangential velocity increases or decreases
with distance along the surface, the local volumetric burning
rate can also increase or decrease with stretch. The role of
the normal velocity gradient is to allow adjustment of the
flame location in the normal direction so that the flame

C.K. Law, C.J. Sung / Progress in Energy and Combustion Science 26 (2000) 459–505 463

Fig. 2. Structure of a wrinkled flame at increasingly detailed levels of description: (a) hydrodynamic level of flame sheet; and (b) transport and
reaction levels of detailed description.



situates where the local flame speed,su; balances the local
normal velocity, su. Thus the combined effects of the
tangential and normal velocity gradients are the displace-
ment of the flame surface, distortion of its geometry, and
modification of the volumetric burning rate. We shall refer
to stretch at this level of consideration as hydrodynamic
stretch.

Resolving the transport and reaction zones (Fig. 2b), the
tangential velocity variation in the transport zone directly
affects the normal mass fluxfb entering the reaction zone.
Furthermore, through interaction with heat and mass diffu-
sion, it can also modify the temperature and concentration
profiles in the transport zone and consequently the burning
intensity,Tb and fb; in the reaction zone, as will be shown
later. We shall refer to stretch at this level as flame stretch.
The normal velocity variation also affects the residence time
within the reaction zone and consequentlyTb and the
completeness of reaction. It is however also important to
note the flexibility with which a premixed flame can adjust
its location to accommodate changes in the normal velocity
gradient and to achieve the local stabilization requirement
of su � uu: Thus a change in the stretch rate does not
necessarily lead to a change of corresponding extent in the
residence time. We shall refer to a flame with total freedom
of adjustment as either a freely propagating or freely stand-
ing flame, depending on whether the flame is in motion in
the frame of reference under consideration.

The hydrodynamic stretch and flame stretch are strongly
coupled in that the hydrodynamic stretch imposes the stretch
intensity within the flame, constituting the flame stretch,
while the flame stretch not only yields the propagation
speed of the hydrodynamic flame surface, but it also predicts
such critical phenomena as flame extinction. The direct
influence of stretch in the reaction zone is expected to be
small because of the secondary importance of convective
transport in this very thin zone.

3. Hydrodynamic stretch

3.1. The G-equation

Let us now consider the situation wherein the flame is
much thinner than the hydrodynamic length scale such
that it can be treated as a surface propagating in the hydro-
dynamic flow. Let the geometry of the surface be described
by

G�x; t� � 0: �8�
This surface is assumed to be smooth and continuous so that
its unit normal vector,

n � 27G=u7Gu; �9�
is uniquely defined everywhere. If we further definen to
be positive when pointed in the upstream direction of the
flame, a flame segment that is convex towards the unburnt

mixture will have a positive curvature. On this surface, the
relation

dG
dt
� 2G

2t
1 V f ·7G� 0 �10�

must hold, whereV f � dx=dt is the local propagation
velocity of the surface. Furthermore, the local propagation
speed of the flame,su, is by definition

su � �Vf 2 vuG�02 �·n; �11�

wherev is the flow velocity. Substituting Eq. (11) into Eq.
(10), and using Eq. (9), we obtain theG-equation [2,7,15]

2Ĝ
2t̂

1 ~vuĜ�02 ·7̂Ĝ� ~suu7̂Ĝu; �12�

where ~su � su=s
o
u and we have also nondimensionalizedv

by so
u; all space variables by the hydrodynamic scale`H;

andt by `H=s
o
u. For consistency all quantities referenced to

the hydrodynamic length scalèH and flame properties
are superscripted by “∧ ” and “ , ”, respectively.

The G-equation, Eq. (12), describes the dynamics and
geometry of the flame surfaceG in the flow field v. We
shall call such a flame as a premixed flamelet. We note
that the LHS of Eq. (12) is simply the substantial derivative
of Ĝ while the RHS represents a source term that causes the
flame surface to propagate with the normal flame speedsu

relative to the unburnt mixture. TheG-equation is coupled
to the governing equations in the hydrodynamic regions
through the termu~vuĜ�02 : The coupling is quite complicated,
representing the interaction between the flame front and the
outer hydrodynamic flow: the outer flow convects the front
while the front affects the outer flow through thermal expan-
sion. The problem, however, can be decoupled and hence
significantly simplified by assuming thatsu is not affected by
stretch such thatsu � so

u over the entire flame surface. We
shall term this mode of flame propagation as the Landau
limit, recognizing that Landau was among the first in
employing this limit in the study of flame dynamics. The
G-equation then becomes

2Ĝ
2t̂

1 ~vuĜ�02 ·7̂Ĝ� u7̂Ĝu: �13�

Further simplification in the analysis can also be achieved
by making the constant density assumption such that the
surface is a passive scalar being convected and distorted
by ~vuĜ�02 ; which can be considered to be prescribed. The
constant density assumption is equivalent to the statement
that there is negligible heat release in crossing the flame
[27]. While such an assumption is obviously violated in
real flames, it facilitates analysis and yields results that are
readily amenable to physical interpretation. There are also
reactive liquid systems in which the spreading of the chemi-
cal front is indeed almost thermally neutral [28].
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3.2. Cusp formation

A characteristic of the Landau limit is the propensity
of cusp1 formation over the flame surface. Fig. 3 shows
the evolution of a flame surface with an initial sinus-
oidal profile in a quiescent environment [29]. It is seen
that, since the flame surface propagates normal to
itself, it spreads out in the protruding, crest region, but
steepens in the receding, trough region, as viewed from
the unburnt side of the flame. Thus depending on the initial
flame shape and the flow field, cusps can develop in the
trough region.

To study this problem in a more general manner, we
consider the evolution of a flame surface in a quiescent
flow field [29]. Eq. (13) then becomes

2Ĝ
2t̂
� u7̂Ĝu: �14�

If we assume that the flame is not folded or multiply
connected, then in two dimension the flame surface can be
described byĜ�x̂; ŷ; t̂ � � ŷ 2 f̂ �x̂; t̂ �; where f̂ �x̂; t̂ � is the
flame shape function witĥf �x̂; 0� � f̂ 0�x̂� being its initial

shape. Eq. (14) can thus be expressed as

2f̂
2t̂
� 2 1 1

2f̂
2x̂

 !2" #1=2

: �15�

Take the partial derivative of Eq. (15) with respect tox̂ and
let ĝ� 2f̂ =2x̂; Eq. (15) becomes

2ĝ
2t̂

1
ĝ

�1 1 ĝ2�1=2
2ĝ
2x̂
� 0; �16�

with the initial conditionĝ�x; 0� � ĝ0�x� � df̂ 0=dx̂:
Eq. (16) is a quasi-linear wave equation whose solution

can be obtained by using the method of characteristics in the
same manner as that for shock formation from compressive
Mach waves in supersonic flows. Thus the general solution
for ĝ is

ĝ�x̂; t̂� � ĝ0 x̂ 2
ĝ

�1 1 ĝ2�1=2 t̂
� �

; �17�

while the minimum timêt p for cusp formation is

t̂ p � min
2�1 1 ĝ2

0�3=2
�dĝ0=dx̂�

( )
; �18�

and the propagation velocitŷvp of the cusp after it is formed
is

v̂p � ��1 1 g2�1=2�
�g� �19�
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Fig. 3. Evolution and propagation of an initially sinusoidal flame surface in a quiescent medium, showing the formation of cusps over the flame
surface.

1 Mathematically, a cusp is defined as the intersection point of
two branches of a curve, with coincident tangents on both sides.
However, in the combustion literature the term “cusp” has been
used to describe the sharp corner along the flame front, correspond-
ing to a discontinuity in the slope of the flame front.



where�·� in Eq. (19) represents the jump in the bracketed
quantity across the cusp.

For the example given in Fig. 3, the initial sinusoidal
flame shape is described bŷf 0�x̂� � 2cosx̂; such that
ĝ0�x̂� � sin x̂: Eq. (18) then readily shows that the cusp is
formed att̂p � 1; as shown in the figure. Furthermore,v̂p �
0 due to the symmetry of̂g.

3.3. Burning rate increase through flame wrinkling

Conceptually, it can be readily accepted that, by wrink-
ling a flame through hydrodynamic stretch, the total flame
surface area is increased. Thus if the burning flux at the
flame surface is not affected by stretch, then the burning
rate of a combustible mixture through which the wrinkled
flame propagates will increase with increasing wrinkling
simply due to the increase in the flame surface area. Indeed,
this is the primary mechanism through which the volumetric

burning rate of a turbulent flame is increased over that of the
planar flame in the regime of thin flamelets.

To demonstrate such an increase in the burning rate [29],
Fig. 4a shows an arbitrarily wrinkled flame situated in a flow
field of uniform velocity ~vj in the y-direction. For2Ĝ=2t̂ �
0; use of ~vj for v in Eq. (13) readily yields

~v � 1 1
2Ĝ
2x̂

 !2,
2Ĝ
2ŷ

 !2" #1=2

; �20�

which shows that~v � v=so
u . 1; hence demonstrating that

the global propagating velocity of a wrinkled flame is higher
than that of the laminar flame.

If the flame is also not folded, then̂G�x̂; ŷ� � ŷ 2 f̂ �x̂�:
SubstitutingĜ into Eq. (20) yields

~v � 1 1
df̂
dx̂

 !2" #1=2

: �21�

Extending Eq. (21) to an arbitrary three-dimensional flame
surface, we have

~v � 1 1 u7̂' f̂ u2
h i1=2

; �22�
where7̂' is the two-dimensional gradient operator in thex
andz directions. For a weakly wrinkled flame, Eq. (22) can
be expanded to yield

~v � 1 1 1
2 u7̂' f̂ u2; �23�

which is basically the quadratic relation derived by Clavin
and Williams [12] for the propagation speed of weakly
turbulent flames.

It is also of interest to note that, for the particular problem
of a uniform and steady upstream velocity, the convex
segment continuously grows, while the concave segment
continuously shrinks until it is totally eliminated when the
cusp is formed. Subsequently the increase in the surface area
and hence the burning rate relative to the planar flame are
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Fig. 4. Schematic demonstrating the increase of bulk flame propa-
gation rate due to flame wrinkling: (a) before cusp formation; (b)
after cusp formation.

Fig. 5. Schematic of a surface element with velocityVf and unit normal vector n in a flow field ofv.



solely contributed by the convex flame segments (Fig. 4b).
Furthermore, the area of such a convex segment will
continuously decrease as the opposite sides of the cusp
collide and annihilate each other. Based on the above
considerationalone, we can then say that in a uniform and
steady flow a wrinkled flame tends to “smooth out” after the
initial formation of cusps.

3.4. The stretch rate

TheG-equation describes the dynamics and geometry of
the flame surface through the knowledge of the flow velocity
at the flame surface,vuG�02 ; the flame propagation speedsu;

and the geometry of the flame through its unit normal vector
n. However, for an observer stationed on the flame surface,
the individual influences of the flow and flame motion
cannot be distinguished. Rather, the observer simply
perceives an unsteady and nonuniform flow approaching it
with some effective velocity. Its influence on the flame
response, either the flame surface area in the hydrodynamic
limit or the flame speedsu and thereby the burning intensity,
is through the extent of the unsteadiness of the flow and the
nonuniform tangential velocity over the flame surface.
Consequently it is reasonable to expect that the various
influences due to flow nonuniformity, flame curvature, and
flame/flow unsteadiness can be collectively described by a

single parameter—the stretch rate, to be defined later in the
article [7,8].

Fig. 5 shows a general flame surfaceG� 0: This surface
has a velocityVf while the fluid has a velocityv. A general
definition of stretch at any point on this surface is the
Lagrangian time derivative of the logarithm of the areaA
of an infinitesimal element of the surface [4],

k � 1
A

dA
dt

; �24�

with the boundary of this surface element moving tangen-
tially along the surface at the local tangential component of
the fluid velocity. Thusk has the unit of s21.

The deceptively simple expression of Eq. (24) actually
contains the various factors that contribute to the influence
of stretch [7,8]. To demonstrate this we now express Eq.
(24) in terms of the dynamics of the general surface defined
by x�p; q; t� as shown in Fig. 5, where (p, q) are the two
curvilinear coordinates on it. The instantaneous velocity of
the surface is thereforeVf �p; q; t� � 2x�p; q; t�=2t: Since
dx � ep dp 1 eq dq; where ep and eq are the unit vectors
in the directions ofp andq, an elemental areaA�p; q; t� of
the surface at timet is simply

A�p; q; t� � �ep dp� × �eq dq� � �dp dq�n; �25�
wheren � ep × eq is the unit vector of the elemental surface
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Fig. 6. Configurations of various model stretched flames.



pointed in the direction in which the surface is propagating,
as defined earlier.

At a later time�t 1 dt�; the surface area becomes

A�p; q; t 1 dt� � ep 1
2Vf

2p

� �
dt

� �
× eq 1

2Vf

2q

� �
dt

� �
dp dq:

�26�
Therefore withA� A·n; the stretch rate can be expressed as

k � 1
A�t� lim

dt!0

A�t 1 dt�2 A�t�
dt

� ep·
2Vf

2p
1 eq·

2Vf

2q

� �
;

�27�
which can be further developed to yield

k � 7 t·Vf 1 �Vf ·n��7·n�; �28�
where7t is the tangential gradient operator over the flame
surface. If we next decomposeVf into its tangential and
normal components asVf � Vf ;t 1 �Vf ·n�n; where Vf ;t is
the tangential velocity of the surface, and assume thatVf ;t

is equal to the tangential component of the flow velocity
vs � vuG�02 at the flame,

Vf ;t � vs;t; �29�
Eq. (28) becomes

k � 7 t·vs;t 1 �Vf ·n��7·n�: �30�
Eq. (30) shows the two sources of stretch a flame can be
subjected to. The first term represents the influence of flow
nonuniformity along the flame surface. Sincevs;t �
n × �vs × n�; this term embodies the effects due to flow
nonuniformity through vs and flame curvature through the
variation in n. Furthermore, it exists only if the flow is
oblique to the flame surface such thatvs × n ± 0: The
second term in Eq. (30) represents stretch experienced by
a nonstationary flame throughVf ; although the flame also
has to be curved because7·n vanishes otherwise. These
three stretch-induced effects can be separately referred to
as those caused by aerodynamic straining, flame curvature,
and flame motion. We further note that as (heat and mass)
diffusion is in the direction ofn, the non-orthogonality
requirement of�vs × n� ± 0 leads us to anticipate the im-
portance of diffusive transport in the dynamics of stretched
flames, although the discussion so far has been kinematic in
nature.

Although the use of the tangential gradient operator at the
surface,7t; provides a clear physical interpretation of
stretch, mathematical specification of7 t can be somewhat
cumbersome, especially for curved flames. However, since
7 � 7t 1 7n; where7n is the normal component of the
gradient operator on the surface, and7n·vs;t ; 0; Eq. (30)
can be alternately expressed as

k � 7·vs;t 1 �Vf ·n��7·n�: �31�
As examples, let us compute the stretch ratek for some
common flame configurations shown in Fig. 6. The flames
are infinitely thin so that the stretched surface is the flame.

(a) Stationary planar flame in stagnation flow—Fig. 6a
shows a planar flame situated in a divergent stagnation flow.
Assuming potential flow, the velocity vector is

v � { �a=�k 1 1��x;2ay; 0} ; �32�
wherea is the strain rate of the flow,k � 0; 1 for Cartesian
and cylindrical coordinates, respectively, and thex- andy-
velocities in the cylindrical coordinates are those in the
radial and axial directions, respectively. Using Eq. (30),
since�V f ·n� � 0 while7 t·vs;t � a; we have

k � a: �33�
(b) Nonstationary spherical flame—we again use Eq.

(30) for evaluation. Here the flame propagates normal to
its surface, implying thatvs;t � 0 andVf ·n � Vf � dRf =dt;
whereRf is the instantaneous flame radius. Furthermore,

�7·n� � ^
1

R1
1

1
R2

� �
; �34�

where ^, respectively, refer to outwardly and inwardly
propagating flames because by definition2ep=2p and
2eq=2q are the two principal radii of curvature,R1 andR2,
pointed away from the flame surface towards the center of
curvature, andn, respectively, points outward and inward
for these flames. Note that as the flame propagates, the
stretch effect becomes weaker for an expanding flame and
stronger for an inwardly propagating flame.

If the flame is spherically symmetric (Fig. 6b and e),R1 �
R2 � Rf ; we have

k � ^
2
Rf

dRf

dt
: �35�

(c) Axisymmetric flame—this configuration includes the
Bunsen flame (Fig. 6c). Adopting the cylindrical�r ; u; z�
coordinate, and using Eq. (30) in whichVf � 0; v �
�0; 0;2w�; andn � �2cosa; 0; sina�; we have

k � 2
sina

r
2

2r
�rw cosa�1 cosa

2

2z
�w cosa�

� �
�36�

evaluated at the flame surface. This result is general in thatw
and a can be general functions ofr and z. If we further
assume thatw and a are constants such that the flame
surface is a circular cone with a sharp apex, then

k � 2
w sin 2a

2Rf
: �37�

Stretch in this case is derived from the three-dimensional
nature of the curved surface. Note that while the forward
stagnation flame and the outwardly propagating spherical
flame are positively stretched, the stretch for the axisym-
metric Bunsen flame is negative. This indicates that the
Bunsen flame actually suffers compression. The intensity
of compression also increases with the decreasingRf as
the flow moves towards the apex. The expression breaks
down around the apex of the cone whereRf ! 0:

Similar to the outwardly and inwardly propagating
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flames, the counterpart of the forward stagnation flame is the
rearward stagnation flame (Fig. 6d), while that of the
Bunsen flame is the inverted flame, whose stretch rate is
positive based on curvature alone.

There are also stretchless flames. Examples are the
stationary and nonstationary one-dimensional planar
flames, and the stationary cylindrical and spherical flames,
respectively sustained by line and point sources [30].

Finally, for discussions on the flame stretch in the next
section, we shall define a nondimensional stretch rate, the
Karlovitz number, as

Ka� tDk ,
`D

su
k ,

�l=cp�u
f 2
u
�ruk� ,

�l=cp�b
ef 2

b

�ruk�; �38�

which is simply the ratio of the flame time,tD; to the hydro-
dynamic time, 1/k . It also shows that the natural unit to
measure the effect of stretch is a density-weighted stretch
rateruk; indicating the essential nature of convective trans-
port. De Goey et al. [9] have developed expressions for the
density-weighted stretch rate.

4. Flame stretch: phenomenology

We now study the effects of stretch on the flame structure
and response [10–14]. Such effects can modify the flame
responses such as the flame speedsu used in theG-equation.

The response has been found to be particularly strong for
mixtures with unequal diffusivities because the flame
temperature is directly affected. The structure itself,
however, turns out to be affected to a much less extent.
For mixtures with equal diffusivities, the influence has
also been found to be quite subtle, as we shall show later.

To demonstrate the influence of nonequidiffusion on the
response of stretched flames, we first note that there are at
least three diffusivities of interest for an inert-abundant
mixture, namely those associated with heatDT, the deficient
reactantDi, and the excess reactantDj. From these three
diffusivities two interpretations for the effects of different
diffusivities have been developed, based on comparingDi

with DT, andDi with Dj, for sufficiently off- and near-stoichio-
metric situations, respectively. These two interpretations can
be, respectively, termed nonunity Lewis number effect,Le�
DT=Di ; and preferential diffusion effect,�Di =Dj� ± 1: The
general phenomena related to unequal diffusion rates will
be referred to as nonequidiffusion effects.

We first consider the flame response in a forward stagna-
tion flow (Fig. 7a), and draw a control volume enclosing the
transport zone and the divergent streamline as shown. By
assuming that the stagnation surface is adiabatic, and that the
flame can freely adjust its location in response to changes in
stretch such that a complete reaction can be achieved; we can
study the coupled effects of flow straining and mixture non-
equidiffusion without complications from the system heat
loss, flame curvature, and incomplete reaction.

Recognizing that the diffusive transport is normal to the
reaction surface, then with the nonunity Lewis number inter-
pretation, the control volume loses thermal energy to the
external streamlines while it gains chemical energy from
them due to an increase of the deficient reactant concentra-
tion. Thus the flame behavior, especially its temperature,
depends on the relative rates of heat and mass diffusion. If
the diffusivities are equal such thatLe� 1; then total energy
is conserved and the flame temperature is the adiabatic flame
temperature. However, ifLe . 1; heat loss exceeds mass gain
and we expectTb , Tad: ConverselyTb . Tad if Le , 1:

We next take the preferential diffusion interpretation.
Then if the leaner reactant is also the more diffusive one,
the reactant concentration in the reaction zone will become
more stoichiometric such that the flame temperature is
higher and the burning more intense. The converse holds
if the leaner reactant is less diffusive.

In the following we shall adopt the nonunity Lewis
number interpretation because off-stoichiometric burning
is more prevalent and because heat diffusion is a crucial
mechanism in flame propagation.

If we now attempt to extinguish this stagnation flame by
increasing the stretch rate, the flame will be pushed closer to
the stagnation surface in order to maintain kinematic
balance between the local flame speed and the flow velocity
normal to the flame surface. At the same time it will suffer
stronger flame stretch and thereby nonequidiffusion effects.
Thus it is clear that forLe . 1; there exists a critical stretch
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Fig. 7. Conceptual demonstration of the nonconservative nature of
stretched flame response in the presence of nonequidiffusion: (a)
stagnation flame; (b) tip of Bunsen flame.



rate at whichTb will be reduced to such an extent that steady
burning is not possible. Extinction occurs when the flame is
at a finite distance away from the surface, with the lean
reactant completely depleted in crossing the flame. On the
other hand, for aLe , 1 flame, increasing stretch elevatesTb

and therefore extinction cannot occur until the downstream
boundary of the reaction zone is pushed onto the stagnation
surface and the flame movement becomes restrained. With
further stretching, reaction cannot be completed because of
the reduced residence time. Only then will the flame tempera-
ture start to decrease, leading eventually to extinction.

The second situation illustrating flame stretch effects
involves the burning intensity over the curved surface of
an axisymmetric Bunsen cone (Fig. 7b). Here if we assume
for simplicity that the flow is uniform, then flame stretch is
manifested through curvature effects, especially in the tip
region which has the strongest curvature. Thus for a closed
tip, its concave nature towards the fresh mixture focuses the
heat ahead of the flame, and therefore tends to raise the
flame temperature to a value aboveTad. On the other hand,
this curvature has a defocusing effect on the concentrations
of the reactants approaching the flame, and therefore tends
to reduce the flame temperature. Thus the temperature of the
flame again depends on the relative rates of heat and mass
diffusion. The deviation increases progressively from the
flame base towards the flame tip because of the correspond-
ing increase in the stretch intensity. Thus forLe . 1; the tip
will burn more intensely relative to the shoulder region of

the flame, while forLe , 1 the burning is less intense and
can lead to local extinction, commonly known as the tip
opening phenomenon. Note that because of the compressive
nature of the Bunsen flame, its response to Lewis number
variations is completely opposite to that of the positively
stretched stagnation flame.

5. Flame stretch: analysis

We shall now derive the various flame responses to
stretch, and thereby confirm the phenomenological discus-
sions presented above. Asymptotic analyses have been
performed for the structure and response of a wrinkled
premixed flame situated in a general nonuniform flow
field [10–13], although the complexity of derivation
precludes their presentation here. Instead, we shall use the
simpler, though somewhat less rigorous, control volume
analysis [14]. Furthermore, we shall break the analysis
into two parts. In Section 5.1 we shall capture the effects
of stretch on the flame response through the model problem
of the freely standing planar flame situated in a strained flow
field that is not affected by the flame. In Section 5.2 we shall
study the unstretched, stationary spherical flame to show
that there is a pure curvature effect which can also modify
the flame speed. Since the analyses are linear in the sense that
the stretch rates and curvatures are considered to be small,
results form these two separate analyses are then added in
Section 5.3 to yield the final expression for the flame speed.
The occurrence of extinction through nonlinear response is
also discussed. These analyses are fairly straightforward,
providing clear quantification of the various phenomena
described above. Finally, in Section 5.4 we present results
from a generalized analysis including the effect of thermal
expansion on the flame structure and response.

5.1. Flame stretch effects

The problem analyzed is shown schematically in Fig. 8a.
Here we shall treat the flow motion in traversing the flame
structure as quasi-one-dimensional, with a varying stream-
tube areaA�x�: The flame boundaries are planar. The quasi-
one-dimensional governing equations are the following.

Continuity:

d� fA�
dx

� 0: �39�

Energy conservation:

d
dx

A fcpT 2 l
dT
dx

� �� �
� AbqcBCYk: �40�

Species conservation:

d
dx

A fY 2 rD
dY
dx

� �� �
� 2AbBCYk; �41�
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Fig. 8. Schematic for the control volume analysis of the planar
stretched flame.



whereAb is the area of the thin reaction zone,f � ru the
local mass flux, andk � exp�2Ta=T� the Arrhenius factor.

Eq. (39) readily yields the constant flow rate, and hence
the mass burning ratem in the streamtube,

m� fuAu � fbAb: �42�
We next integrate Eq. (40) over the preheat zone, from the

unburnt state whereA� Au to x2
f . The integration, however,

is performed by recognizing (Fig. 8a) that while convective
transport follows the streamline over the entire streamtube
such thatA varies fromAu to Ab andm is fixed, diffusive
transport occurs only in the direction normal to the reaction
“sheet” such that only the diffusion heat flux from the
projection of Au to Ab is utilized in heating the unburnt
mixture. Thus diffusive transport takes place only over an
areaAu. Consequently we have

mcp�Tb 2 Tu�2 l
dT
dx

� �
x2

f

Au � 0: �43�

We then integrate Eq. (40) across the reaction zone,
which has a constant areaAb and uniform downstream
temperatureTb, to obtain

l
dT
dx

� �
x2

f

� qcBC

Zx1
f

x2
f

Ykdx: �44�

By multiplying Eq. (44) byAb; and adding the resulting
expression to Eq. (43), we obtain overall energy transport
across the entire flame,

mcp�Tb 2 Tu�1 l
dT
dx

� �
x2

f

�Ab 2 Au� � AbqcBC

Zx1
f

x2
f

Ykdx:

�45a�
Although Eq. (45a) is not an additional, independent rela-

tion, it clearly shows the nonconservative nature of the ther-
mal energy transport. That is, if thermal energy were
conserved, then all the chemical heat release is used to
heat the mixture from the freestream. The diffusion term
should then identically vanish, as for the one-dimensional
planar flame in whichAu ; Ab: For the present problem,
however, a finite amount of the thermal energy is lost
from the control volume because of the change in the
streamtube area and the fact that the diffusive transport
occurs normal to the reaction zone.

A similar manipulation for the species concentrationY
yields the expression indicating the nonconservative nature
of species transport:

mYu 1 rD
dY
dx

� �
x2

f

�Ab 2 Au� � 2AbBC

Zx1
f

x2
f

Ykdx: �45b�

However, if we add the expressions for the overall trans-
port of thermal energy and species, and if we further assume
equal diffusivities�Le� 1�; then the loss in thermal energy
is balanced by the gain in chemical energy such that the
system is again rendered conservative, and the resulting
flame temperature would be the adiabatic flame tempera-

ture. ForLe ± 1; such a compensation does not exist and
the system would be nonconservative, as discussed phenom-
enologically.

By defining effective thicknesses for the thermal and mass
diffusion zones as (Fig. 8b)

`T � Tb 2 Tu

ÿ �
�dT=dx�x2

f

; `M � 2Yu

�dY=dx�x2
f

;

Eqs. (43) and (44), respectively, become

fu`T � �l=cp�; �46�

l
�Tb 2 Tu�

`T
� qcBC

Zx1
f

x2
f

Ykdx: �47�

A similar integration for the species equation yields

fu`M � �rD��AM =Au�; �48�

�rD� Yu

`M
� Bc

Zx1
f

x2
f

Ykdx �49�

Eqs. (45)–(49) provide four relations to solve the four flame
responses,fu; Tb, `T and `M in terms of the area ratio
�AM =Au�: It may be noted that the definitions of̀T and
`M simply replace the flame parameters�dT=dx�x2

f
and

�dY=dx�x2
f
; no additional independent relations are intro-

duced.
If we assume that the change in the streamtube area is

gradual (see Fig. 8b), then

Ab 2 Au

`T
<

Ab 2 AM

`M
; �50�

which relatesAM to Au. Finally, recognizing that the Karlo-
vitz number is simply a nondimensional measure of the
extent of flow nonuniformity across the flame, it can be
represented by the fractional area change along the stream-
tube. We can thus identifyKa as

Ka <
DA
Au
� Ab 2 Au

Au
� Ab

Au
2 1; �51�

which relatesAb to Au through Ka. The problem is now
completely defined in terms of the Karlovitz numberKa.

Approximating the reaction integral in Eqs. (47) and (49)
by �eoYu�`o

R exp�2Ta=Tb�; we obtain for Kao �
��l=cp�u=� f o

u �2��ruk�p 1 the linearized solution

�Au=AM� � 1 1 So �52�

�`T=`M� � �1 1 So�Le �53�

Tb � To
b 1 �To

b 2 Tu�So �54�
~f u � � fu=f o� � ~su � 1 1 s o �55�
~f b � � fb=f o� � 1 1 s o 2 Kao

=Le �56�
~̀
T � �`T=`

o
T� � 1 2 s o

; �57�
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where we have defined the two stretch-related parameters

So � 1
Le

2 1
� �

Kao
; s o � So

2eo � MaoKao �58�

and a Markstein number

Mao � �Le21 2 1�
2eo : �59�

The above results degenerate to those of the one-dimen-
sional planar flame forKao � 0; as should be. Furthermore,
although the above derivation was performed only for the
aerodynamically stretched planar flame, the general nature
with whichk and hence the Karlovitz numberKao is defined
implies that these results are applicable to flames subjected
to various sources of stretch, as imposed by flow nonunifor-
mity, flame curvature, and flame motion.

Several interesting observations can be made regarding
the above results. First, we have identified two
reduced parameters, namelySo ands o

: The parameterSo �
�Le21 2 1�Kao represents the combined effects of stretch
and nonequidiffusion, and directly affects the flame
temperature through energy conservation. Furthermore,
since deviation of the flame temperature from the adiabatic
flame temperature can occur only in the simultaneous
presence of stretch�Kao ± 0� and nonequidiffusion�Le ±
1�; and sinceKao can be positive and negative, whileLecan
be greater or less than unity, we expect

Tb . To
b � Tad for { Kao . 0; Le , 1}

or {Kao , 0; Le . 1}

Tb , To
b � Tad for { Kao . 0; Le . 1}

or {Kao , 0; Le , 1} :

Thus the flame behavior for a gas of givenLe is completely

opposite for the positively stretched stagnation flame and
the negatively stretched Bunsen flame, as anticipated earlier
from the phenomenological discussion.

The modification ofTb throughSo leads to corresponding
modifications of the burning flux and flame thickness
through the factors o

; which combines the influence ofSo

and chemical activation througheo
: Since the present analy-

sis is a linearized one such that perturbation in the burning
rate,s o

; is at most O�eo�; then perturbation in the flame
temperature,So

; is O��eo�2�: The requirement ofS�
O��eo�2� for the present linearized analysis can be met by
either a highly nonequidiffusive mixture,�Le2 1� � O�1�;
and weakly stretched flame,Kao � O��eo�2�; or a near-equi-
diffusive mixture, �Le2 1� � O�eo�; and a moderately
stretched flame,Kao � O�eo�: In any case, the linearized
results cannot exhibit the intrinsically nonlinear phenomena
of extinction.

It is of particular significance to recognize that, for an
equidiffusive mixture�Le� 1�; the effects of stretch vanish
identically such that~Tb � ~To

b;
~f u � 1; ~f b � 1 2 Kao and

~̀
T � 1: Thus for an adiabatic, equidiffusive, freely propa-

gating, strained planar flame, the flame temperature, the
upstream burning flux, and the flame thickness are not
affected by flow straining, being identical to their unstrained
values. The downstream burning fluxfb is modified from the
unstrained value,f o

; by an amountKao
; simply due to flow

divergence. As corollaries, we then expect that the thermal
and concentration structures of the flame, in the direction
normal to its surface, should be insensitive to strain rate
variations. Furthermore, since the burning intensity at the
reaction zone, as indicated by the flame temperature~Tb; is
not affected by strain, we should also expect that this flame
cannot be extinguished by strain alone.

The above observations are in variance with some well-
held concepts in combustion theory, which suggest that flow
straining is a major cause of flame extinction in a nonuni-
form flow field [31]. The most commonly accepted argu-
ment is that increasing straining convectively reduces the
flow residence time within the flame, which leads to a reduc-
tion in the flame thickness and hence eventually flame
extinction. While this still holds for nonpremixed flames,
the above concept has overlooked the fact that a premixed
flame can freely move with increasing straining. It can
therefore relocate itself to achieve dynamic balance within
the flow field such that its scalar structure remains largely
unaffected.

5.2. Pure curvature effects

We next consider the situation of Fig. 9 in which a steady
spherical flame is supported by a point source of constant
mass flow ratem� fA: Since diffusion now occurs in the
same direction as convection, the flame is not stretched�vs ×
n ; 0� and is basically the spherical analog of the one-
dimensional planar flame [30].

A balance of thermal energy and species transport
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Fig. 9. Schematic for the control volume analysis of the stationary
spherical flame supported by a point source.



through a radial streamtube across the entire flame
respectively yields

mcp�Tb 2 Tu� � AbqcBC

ZR1
f

R2
f

Ykdr �60�

mYu � AbBC

ZR1
f

R2
f

Ykdr : �61�

Comparing Eqs. (45a), (45b) and (60), we see that there is
no diffusive loss in the present case and hence thermal
energy is conserved across the flame. This is due to the
fact that since diffusion now takes place along the stream-
line, the total amount of diffusive transport atAu and Ab

must be the same. A similar observation can be made for
species conservation. Thus adding Eqs. (60) and (61) results
in

cp�Tb 2 Tu� � qcYu; �62�
which shows thatTb � To

b :

Analysis for the rest of the flame responses follows the
same procedure as that for the stretched flame. In particular,
we have

~̀
T � 1;

`T

`M
� Le �63�

~f u � Ab

Au
� Rf

Rf 2 `T

� �2

< 1 1 `o
T

2
Rf

� �
; for `o

T p Rf

�64�

~f b � Au

Ab

� �
~f u � 1: �65�

Recognizing that (22/Rf) is simply the curvature term7·n

for the spherical flame,~f u can be generalized to

~f u � 1 2 `o
T7·n � 1 2 ~7·n: �66�

We have therefore shown that for a purely curved flame,
without stretch effects, the downstream burning flux
remains the same as that of the one-dimensional planar
flame, while the upstream burning flux is increased by an
amount proportional to its curvature. Thusfu is increased
for a flame with negative curvature, and decreased other-
wise. This is the factor that allows the burning flux at the
tip of a Le� 1 Bunsen flame to exceed that at the shoulder
[32]. It is also significant to note that, withLe� 1; while fu
is unaffected by straining for the planar stagnation flame, it
is affected by the curvature for the purely curved flame.
Consequently, through flow divergencefb is affected for the
strained planar flame but unaffected for the purely curved
flame.

5.3. Linear and nonlinear solutions

Since the above solutions were obtained from linear
analyses, it is reasonable to expect that a generalized linear
solution would be the sum of the solutions for the stretched
flame and unstretched but curved flame. SinceTb;

~̀
T;

`T=`M and ~f b are unaffected by curvature for the purely
curved flame, their respective generalized responses are
the same as those for the stretched flame, given by Eqs.
(54), (57), (53) and (56), respectively. For~f u and ~f b; such
a combination yields [14]

~f u � 1 2 ~7·n 1 s o �67�

~f b � � fb=f o� � 1 1 s o 2 Kao
=Le: �68�

The linearized solution is not capable to describe the
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Fig. 10. Characteristic extinction turning point behavior for the nonlinear stretched flame.



extinction phenomenon, as mentioned earlier. Furthermore,
the validity of the analysis will necessarily breakdown as
Kao increases. In particular, for the planar strained flame,
the burning fluxesfu andfb will increase and decrease with-
out bound forLe , 1 and.1, respectively.

A phenomenological analysis, however, can be readily
performed based on previous results to describe the
nonlinear extinction response. The crucial point to recog-
nize is that for the strongly stretched, near-extinction flames,
stretch-induced variations of the burning flux should be
O(1), which implies that the corresponding variation of
the flame temperature should be O�eo�:

We next note that the characteristic time result of Eq. (3)
for the one-dimensional adiabatic flame is equally applic-
able to a generalized flame of flame temperatureTb: Then
we can write

f 2
b , wb , exp�2Ta=Tb�: �69�

The flame temperatureTb is given for the stretched flame by
Eq. (54), except now the perturbed amount is O�eo�: Substi-
tuting Tb into Eq. (69) and expanding, we have

f 2
b , exp 2

Ta

To
b

 !
exp

So

eo

� �
: �70�

The stretch parameterS depends onKa; which in turn
depends on the flame thickness and hence the burning
flux, fb; as shown in (38). This provides the needed feedback
mechanism for extinction.

Ka
Kao ,

� f o
b �2
f 2
b

,
1
~f 2
b

;

where ~f b � fb=f
o
: Using the aboveKa in f 2

b in (70), and
noting that� f o�2 , exp�2Ta=T

o
b�; we have

~f 2
b ln ~f 2

b � 2s o
: �71�

For s o , 0; Eq. (71) exhibits the characteristic double
valued extinction turning point behavior, as shown in Fig.
10. Here the upper branch is the physically realistic one
while the lower branch is unstable. Thus for a stretchless
flames,s o � 0 and ~f b � 1: By decreasings o

; ~f b decreases
until it reaches the turning point, at which extinction is
expected. The extinction turning point is defined by
�ds o

=d~f b�ex � 0; which yields ~f b;ex � e21=2 and 2s o
ex�

2e21
: Thus a flame is expected to extinguish, either

globally or locally, as respectively exemplified by those of
the counterflow flame and the opening of the Bunsen flame
tips to be discussed later, when the global or local stretch
parameter 2s o reaches2e21, at which the flame speed is
reduced to e21=2 of its adiabatic value.

5.4. General solution with thermal expansion

While the above solutions are adequate to show the
qualitative behavior of flames when subjected to stretch,
they are quantitatively inaccurate. Perhaps the most severe

assumption in the formulation is the suppression of the influ-
ence of thermal expansion on the flow velocity within the
flame. Since the extent of thermal expansion is O(1), it is
reasonable to expect that its influence is also O(1).

Recognizing that the temperature profile within the
preheat zone is known to the leading order, the influence
of thermal expansion has been incorporated in a generalized
formulation of stretched flames, in the linearized limit [26]
as well as allowing for nonlinearity and hence the descrip-
tion of extinction [33]. The major results in the linearized
limit are given in the following equations.

Tb 2 Tu

To
b 2 Tu

� 1 1
_R� ~7·n 1 a oKao�

Lesou
�L 2 ao�

2
_R� ~7·n 1 a oKao�

so
u

bo

1 2 bo �ao 2 1�1 aoSo

�72�

`T

`o
T
� 1 1

1
2eo

Tb 2 To
b

To
b 2 Tu

 !
�73�

su

so
u
� 11

(
1

2eo

"
L 2 ao

Le
2

bo�ao 2 1�
1 2 bo

#
2

L

Le

)

�
_R� ~7·n 1 a oKao�

so
u

1 aos o 1 ~7·n �74�

sb

so
b
� 1 1

1
2eo

L 2 ao

Le
2

bo�ao 2 1�
1 2 bo

� �
2

L 2 ao

Le

� �

� _R� ~7·n 1 a oKao�
so
u

1 aos o 2
aoKao

Le
; (75)

where _R� dR=dt is the propagation speed of the flame front,
bo � Tu=T

o
b � ro

b=ru; a
o � 1 1 ln�bo 1 �1 2 bo�e21� is the

factor accounting for the thermal expansion effect, and

L �
Z1

0

bo�1 2 e2j�
bo 1 �1 2 bo�e2j=Le dj;

with j ; x=`M being in the flame coordinate.
For a stationary flame� _R� 0� andao � 1; Eqs. (74) and

(75) degenerate to Eqs. (67) and (68).

6. Flame stretch: experimental and computational
results

6.1. Equidiffusive flames

Perhaps one of the most interesting properties predicted
for stretched flames is that, for an equidiffusive�Le� 1�;
freely standing or freely propagating planar stretched flame,
its flame temperature, thickness, and the upstream burning
flux, are independent of the magnitude of stretch. This then
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further implies that the flame structure in the direction
normal to the flame surface should also be insensitive to
strain rate variations. In order to verify this prediction, the
temperature and major species profiles across an adiabatic,
equidiffusive, nitrogen-diluted �N2=O2 � 5�; f � 0:95
methane/air flame in a symmetrical counterflow has been
experimentally determined by using laser Raman spec-

troscopy [23]. The symmetrical counterflow produces two
identical flames situated on opposite sides of the stagnation
surface. Owing to symmetry, all gradients vanish at the
stagnation surface, hence providing well-defined “adia-
batic” downstream boundary conditions. Fig. 11 shows the
temperature profiles for four strain rates, with the highest
strain rate (348/s) being close to the extinction state. It is
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Fig. 11. Experimentally determined temperature profiles of counterflow flames with different strain rates, in the laboratory co-ordinate.

Fig. 12. Experimentally determined temperature profiles of counterflow flames with different strain rates, in the flame co-ordinate, demonstrat-
ing the insensitivity of the flame structure to strain rate variations.



seen that, with increasing straining, the flame recedes
towards the stagnation surface�x � 0� in order to maintain
dynamic balance. If we now superimpose these temperature
profiles by shifting their spatial locations such that the loca-
tions of their maximum temperature gradients coincide, then
Fig. 12 shows that, in this “flame coordinate”, the tempera-
ture profiles basically overlap. To provide an even more
stringent comparison, the temperature gradients were eval-
uated. Fig. 13 shows that their profiles again overlap. Simi-
lar results were obtained for the major species profiles.
Furthermore, these experimental results also quantitatively
agree well with the computed ones using detailed chemistry
and transport [23]. As such, it is reasonable to conclude that
the structure of equidiffusive, planar flames is insensitive to
strain rate variations.

Fig. 13 also tabulates the computed Karlovitz numbers,
Kao � �`o

T=s
o
u�k; for the four flames, withso

u � 17:0 cm=s
independently calculated. The flame thickness is found to
be 0.785 mm based on the definitioǹ o

T � �Tad 2
Tu�=�dT=dx�max: Using this value, Fig. 13 shows that the

Karlovitz numbers including that for the near extinction
state are either smaller than, or of the order of, unity.

6.2. Nonequidiffusive flames

For nonequidiffusive, stretched flames, theoretical results
show that the flame response exhibits opposite behavior
when the stretch changes from positive to negative, and
when the mixture’s effective Lewis number is greater or
less than a critical value, which is unity for the flame
temperature. These completely opposite trends should
provide definitive verification of the concept of flame stretch
with nonequidiffusion.

Two groups of mixtures are especially suitable for the
study of nonequidiffusive effects (Table 1). The first group
consists of lean hydrogen/air, lean methane/air, and rich
propane/air mixtures. Estimates show that their effective
Lewis numbers, based on the deficient species and
freestream conditions, are less than unity. Thus positive
(negative) stretch is expected to increase (decrease) the
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Fig. 13. Experimentally determined temperature gradient profiles of counterflow flames with different strain rates, in the flame co-ordinate.

Table 1
Mixtures for the study of nonequidiffusion effects

Mixture for simulation Le ± 1 interpretation Di ± Dj interpretation

Lean hydrogen/air LeH2
, 1

Lean methane/air LeCH4
, 1

Rich propane/air LeO2
, 1 DH2

. DCH4
. DO2

. DC3H8

Rich hydrogen/air LeO2
. 1

Rich methane/air LeO2
. 1

Lean propane/air LeC3H8
. 1



flame intensity of such mixtures. This argument still holds
even if we just consider the relative mass diffusivities of the
fuel and oxidizer species. That is, based on molecular
weight considerations, the diffusivities of the various reac-
tants relative to nitrogen decrease in the order of propane,

oxygen, methane, and hydrogen. Thus positive (negative)
stretch will increase (decrease) the methane or hydrogen
concentration of a lean methane/air or hydrogen/air mixture,
but decrease (increase) the propane concentration of a rich
propane/air mixture at the flame. Both mixtures are
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Fig. 14. Calculatedsb for weakly stretched counterflow hydrogen/air flames, showing its linear variation with stretch rate, and the opposite
response for lean and rich flames.

Fig. 15. Calculatedsb for weakly stretched counterflow propane/air flames, showing its linear variation with stretch rate, and the opposite
response for lean and rich flames. Also note the opposite response with the counterflow hydrogen/air flames.



consequently rendered more (less) stoichiometric at the
flame, leading to enhanced (reduced) burning intensity.

The second group consists of rich hydrogen/air, rich
methane/air, and lean propane/air mixtures, whose effective
Lewis numbers are greater than unity while positive

(negative) stretch also renders the mixture less (more) stoi-
chiometric. Thus the responses of these two groups of
mixtures to stretch are expected to be qualitatively opposite.

Experiments and computations have been conducted
using these mixtures in flame configurations exhibiting
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Fig. 16. Calculatedsb for weakly stretched outwardly propagating spherical hydrogen/air flames, showing its linear variation with stretch rate,
and the opposite response for lean and rich flames.

Fig. 17. Calculatedsb for weakly stretched outwardly propagating spherical propane/air flames, showing its linear variation with stretch rate,
and the opposite response for lean and rich flames.



positive and negative stretches. For positive stretch,
extensive experiments have been performed by using the
symmetrical counterflow flame (CFF) and the outwardly
propagating flame (OPF). For negative stretch, the inwardly

propagating flame (IPF) and the Bunsen flame (BF) have
been used.

Fig. 14 shows the computationally determined [26]sb as a
function of the stretch rate for lean and rich hydrogen/air
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Fig. 18. Calculatedsu for weakly stretched inwardly propagating spherical hydrogen/air flames, showing its linear variation with stretch rate,
and the opposite response for lean and rich flames. Also note the opposite response with outwardly propagating flames.

Fig. 19. Calculatedsu for weakly stretched inwardly propagating spherical propane/air flames, showing its linear variation with stretch rate, and
the opposite response for lean and rich flames. Also note the opposite response with outwardly propagating flames.



counterflow flames, withsb defined as the axial flow velocity
at the location of the maximum heat release rate. The use of
sb avoids the ambiguity from choosing the spatial location at
which su is defined. It is seen that whilesb increases withk
for lean flames, it decreases for rich flames. This is in agree-
ment with the anticipated behavior of the positively
stretched flames withLe smaller and greater than unity,
respectively. The increasing trend for the lean flame due
to nonequidiffusion is particularly significant because, as
shown in Eq. (56), pure stretch alone would causesb to
decrease because of flow divergence.

To further demonstrate the importance of nonequidiffu-
sion, Fig. 15 shows the corresponding plot for the lean and
rich propane/air flames. Since theLe behavior for lean and
rich mixtures are switched for hydrogen/air and propane/air
flames, it is seen thatsb now exhibits completely opposite
behavior, decreasing for lean mixtures while increasing for
rich mixtures.

Figs. 16 and 17 show thesb for the outwardly propagating
hydrogen and propane flames;sb is chosen because the
downstream state is stationary for the OPF in the laboratory
frame, and as such is well defined. It is seen that since OPF
is also positively stretched, the flame responses are qualita-
tively similar to those for the CFF. However, unlike the CFF
whose sb is affected by both nonequidiffusion and flow
divergence, thesb for the OPF is affected only by non-
equidiffusion. Thus the opposite behavior for lean and rich
flames here is a clear indication of the influence of non-
equidiffusion alone.

Figs. 18 and 19 show the flame speed response for the
negatively stretched, inwardly propagating flames. Since the
nature of the stretch rate is now reversed as compared to
the CFF and OPF, it is seen that the flame response is also

reversed, withsu decreases and increases with increasing
stretch rate for the hydrogen/air flames, and increases and
decreases for the propane/air flames. We further note that
since the upstream state of an IPF is stationary in the labora-
tory frame,su is a more logical choice thansb in determining
the flame speed.

The final point to note is that the variations shown in Figs.
14–19 are all linear, indicating that the flame computed are
all weakly stretched and hence can be described by the
linear theory presented earlier. It may be noted that although
the intensity of stretch cannot be precisely quantified
because of the corresponding imprecise definition of
the flame thickness and hence the Karlovitz number, it
can be assessed by the extent of the deviation of the
flame response from that of the unstretched value,
obtained by linearly extrapolating the stretched flame
speeds to zero stretch. The results of Figs. 14–19
show that such deviations are at most about 20%. The
observed linear behavior is therefore consistent with the
result of small deviation.

We next examine the role of nonlinear stretch and non-
equidiffusion in flame extinction. Fig. 20 shows the photo-
graphic images of the binary flame configuration for lean
and rich methane/air and propane/air mixtures at the state
just prior to extinction if stretch is further increased by
increasing the freestream flow velocities [16]. It is seen
that while the lean propane/air and rich methane/air flames
are quite separated at extinction, implying that the flames
are located away from the stagnation surface and hence xf .
0; the lean methane/air and rich propane/air flames merge at
extinction, implying xf � 0: This result agrees with our
previous discussion thatLe . 1 flames extinguish while
situated away from the stagnation surface, andLe , 1
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Fig. 20. Counterflow twin flame images just prior to the state of extinction: (a) lean methane/air; (b) rich methane/air; (c) lean propane/air; and
(d) rich propane/air.



flames extinguish at the stagnation surface because of
incomplete reaction.

Fig. 21 shows the computed heat release rate profiles with
increasing stretch, for lean and rich methane/air and
propane/air flames. The estimated Lewis numbers for the
mixtures are also indicated. The stoichiometries are those
of the experiments of Tsuji and Yomaoka [17]. It is seen that
for the Le . 1; rich methane/air and lean propane/air
flames, the maximum heat release rate is reduced with
increasing stretch. As extinction is approached, the reaction
zone can still be considered to be away from the stagnation
surface. Furthermore, reaction is “complete”, recognizing
nevertheless that the slow CO oxidation will always impart
some degree of incomplete reaction and hence truncate the
reaction rate profile at the stagnation surface. For theLe ,
1; lean methane/air and rich propane/air flames, the maxi-
mum heat release rate is seen to continuously increase with
increasing stretch and the reaction zone profile is truncated
at the stagnation surface even for moderate stretch rates,
sufficiently in advance of the extinction state.

Fig. 22 shows the computed maximum (flame) tempera-
ture,Tb; with strain rate variations for the situations of Fig.
21. The plot exhibits the upper and middle branches of the
characteristic S-shaped ignition–extinction curves, with the
solid segments corresponding to the physically realistic
branches and the dashed segments the unstable branches.
Consequently the turning points designate the states of
extinction. The behavior ofTb with increasing stretch cor-
roborates the observation of Fig. 21 in that, for theLe . 1
flames,Tb monotonically decreases with increasing strain
rate, while forLe , 1 flamesTb first increases and then
decreases as the extinction state is approached. It may also
be noted that since the Lewis numbers of the methane/air
mixtures are very close to unity, the distinguishing trends
between the lean and rich cases are not as prominent as those
of the propane/air mixtures.

It is significant to note that the above linear and extinction
results have all been observed in experiments involving the
counterflow flames [16,17,34] and the outwardly propagat-
ing flames [20–22].
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Fig. 21. Computed heat release rate profiles for counterflow twin flames with increasing strain rate: (a) lean methane/air; (b) rich methane/air;
(c) lean propane/air; and (d) rich propane/air.
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Fig. 22. Computed flame temperatures for counterflow twin flames with increasing strain rate, for the same mixtures as those of Fig. 21. The
extinction turning point is designated by “p ”.

Fig. 23. Images of Bunsen flames of: (a) rich propane/air; (b) lean propane/air; (c) rich methane/air; and (d) lean methane/air mixtures.



Next we examine the flame temperature response to
negative stretch, provided by the increasing curvature
along the surface of a Bunsen cone. The behavior should
be completely opposite to those of the counterflow and
outwardly propagating flames. Fig. 23 [35] shows the photo-
graphic images of the flame configurations of lean and rich
propane/air and methane/air mixtures. It is clear that with
increasing curvature, and thereby increasing negative
stretch along the surface as the flame tip is approached
from the flame base, the burning intensity increases for
lean propane/air and rich methane/air mixtures, but
decreases for rich propane/air and lean methane/air
mixtures. The reduction in the flame temperature can be
so severe that extinction occurs at the flame tip that suffers
the largest stretch, exhibiting the tip-opening phenomenon.

To quantify the above observation, Fig. 24 shows the
measured maximum temperature along the flame surface
[18,19]. Excluding the segment near the flame base where
burning is weak due to heat loss to the burner rim, it is seen
that as we move along the flame towards the flame tip,
the flame temperature increases for the rich methane/air
and lean propane/air flames, but decreases for the lean
methane/air and rich propane/air flames. The neutral
compositions are found to be approximatelyf � 1:00
and 0.94 for methane/air and propane/air flames,
respectively.

Recognizing that the flame responds in opposite trends for
methane/air and propane/air mixtures, additional exper-
iments have been conducted for ethylene/air mixtures
because the molecular weight of ethylene is between those
of methane and propane. Indeed, Fig. 24 shows that for the
ethylene/air flame,Tf varies very slightly not only with
flame curvature but also for rich and lean mixtures. This is
in agreement with the theoretical result that for an
equidiffusive mixture, stretch has no effect on the flame
temperature.

We further note that since the flame temperature can
deviate from the adiabatic flame temperature only in the
simultaneous presence of stretch and nonequidiffusion, the
deviation should also be suppressed for a nonequidiffusive
mixture if the flame is not stretched. By using the shoulder
region of a two-dimensional Bunsen flame to simulate such
an unstretched flame, Fig. 25 shows that the flame tempera-
ture there is indeed minimally affected for the lean and rich
methane/air and propane/air flames.

The above results clearly demonstrate that the behavior of
the negatively stretched Bunsen flames are completely
opposite to those of the positively stretched forward stagna-
tion and outwardly propagating spherical flames. Thus all
experimental and computational results are in agreement
with the concept of flame stretch in the presence of non-
equidiffusion. The effects of pure curvature on the local
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Fig. 24. Flame tip temperatures of methane/air, propane/air and ethylene/air Bunsen flames with various equivalence ratios and hence nature of
nonequidiffusion.



flame speed have also been investigated and are found to
qualitatively agree with the theoretical anticipations [32].

6.3. Quantitative extraction of global flame parameters

In addition to understanding the behavior of stretched
flames, it is also of interest to be able to quantitatively
describe the dynamics and geometry of flame surfaces in
nonuniform flow fields through the use of such simple, but
generalized, global expressions given in, say Section 5.4.
These expressions can then be integrated in the study of
complex flame phenomena such as turbulent flames.

An inspection of the general solution of Section 5.4 shows
that, in order to evaluate the various stretched flame
responses for a given thermodynamic state defined by its
temperature, pressure, and composition, and for a given
stretch intensityk , we need to know the laminar flame
speed,so

u (or so
b), the thickness,̀ o

D; as well as the global
physico-chemical parametersEa (throughZe) and Le: The
thermodynamic parameters of the burnt state,To

b andro
b; can

be readily calculated from the upstream state. In the follow-
ing we use the hydrogen/air and propane/air systems [26] to
demonstrate how these various parameters can be
determined.

The laminar flame speed can be either calculated, if we
know the chemical kinetic mechanism, or experimentally

measured. The experimental determination can use either
the counterflow flame [36,37] or the outwardly propagating
flame [20–22], with linear extrapolation to zero stretch rate
as shown in Figs. 14–17. Fig. 26 shows the result of such a
linear extrapolation, say by using the OPF. Fig. 27 demon-
strates the internal consistency of the concept of linear extra-
polation by showing that the extrapolated values obtained
by using the CFF, OPF, and IPF all agree with each other as
well as the independently calculated laminar flame speed. In
Fig. 26 we have also plotted the laminar burning flux in
order to emphasize the fact that it is the fundamental eigen-
value of the flame propagation. Specifically, it is seen that
while the flame speed decreases with pressure, the burning
flux increases with pressure.

Determination of the laminar flame thickness, which
provides an indication of the residence time within the
flame, is somewhat more uncertain, for two reasons. First,
it is well established that the simple relatioǹo

D ,
�l=cp�u=f o

; based on the characteristic time considerations,
yields values which are too small. Thus a reasonably accu-
rate determination requires resolution of at least the thermal
profile of the flame, either computationally or experimen-
tally. Secondly, since the flame thickness is definition
dependent, there exist considerable uncertainties in the
determined values.

To resolve the above uncertainty, the flame thickness has
been evaluated using both the gradient definition,`o

T �
�To

b 2 Tu�=�dT=dx�max; as well as the full-width at half-maxi-
mum (FWHM) value of the temperature gradient profile.
Fig. 28a shows that the flame thicknesses determined
using these two definitions are actually quite close to each
other, and are therefore self-consistent.

The global parametersEa and Le need to be extracted
from the flame responses. It is important to recognize that
they are both physico-chemical properties of the flame.
Specially, althoughEa is meant to describe the global
response of the detailed reaction chemistry, the progress
of the individual reactions obviously depends on the avail-
ability and concentrations of the intermediates, which in
turn depend on the transport aspects of the problem. By
the same token, althoughLe is superficially a parameter
representing the transport of the freestream reactants, there
are many intermediates, produced through intermediate
reactions and with different diffusivities, that could
affect the entire reaction progress and manifest their
effects through some nonequidiffusive phenomena. As
such, Ea and Le are fundamentally flame dependent
properties.

The above discussions indicate thatEa andLe are func-
tions of the stretched flame environment, and hence are
specific to each stretched flame under study. It is, however,
reasonable to expect that the chemical and transport aspects
of the flame structure should be insensitive to stretch as far
as the influence ofEa andLe is concerned. The following
extraction procedure is based on this premise.

From the expression of the laminar flame speed [38],
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Fig. 25. Temperature profiles over the two-dimensional Bunsen
flame surface for methane/air and propane/air flames, showing the
absence of stretch effects over the shoulder region of the unstretched
flame.



f o , exp�2Ea=2RTo
b�; we have

d ln f o

d�1=To
b�
� 2

Ea

2R
: �76�

Since the basic flame characteristics should be minimally
affected when evaluating the differential in Eq. (76), either
computationally or experimentally, a viable approach to
effect the change inTo

b ; and therebyf o
; is through substitu-

tion of a small amount of nitrogen in the mixture by an equal
amount of argon. Fig. 28b shows the extracted values for the
hydrogen/air flames. It is seen that the extractedEa has a
minimum inf , demonstrating that the progressive reduction
in the flame speed, as the mixture becomes either leaner or
richer, is due to a decrease in the flame temperature as well
as an increase in the chemical activation.

Regarding the extraction ofLe, we first note that
frequentlyLe is calculated as the ratio of the thermal diffu-
sivity of the mixture to the mass diffusivity between the
deficient reactant and the abundant species of the mixture,
which is usually nitrogen, all based on the freestream
mixture properties. Such an approach obviously cannot be
used for near-stoichiometric mixtures.

We demonstrate the extraction ofLe by using the CFF
[26]. For this flame, with equidiffusion assumption Eq. (75)
degenerates to

sb � so
b 1

�1 2 Le�
2eo 2 1

� �
aok`o

T

bo : �77�

From the computed and experimental results such as Fig. 15,
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Fig. 26. (a) Laminar flame speed, and (b) laminar mass burning flux of hydrogen/air flames determined through linear extrapolation of the
stretched flame speeds of outwardly propagating flames to zero stretch rate. Note the agreement with independently calculated laminar flame
speeds denoted by line.



we also have

sb � so
b 1 Lbk: �78�

Equating the coefficients of the above two expressions, we
have

Lb � �1 2 Le�
2eo 2 1

� �
ao

bo `o
T; �79�

from whichLecan be determined for a givenf . To increase
the accuracy of such a determination, for a givenf we can
plot �Lb=`

o
T��bo

=ao�1 1 versus 1=2eo for several pressures.
It Le is not a sensitive function of pressure, as is reasonable
to expect, then such a plot would yield a straight line whose
slope is�1 2 Le�:

Fig. 29c shows that such a linearity indeed exists. Similar
extractions can also be performed for the OPF and IPF, as
shown in Fig. 29a and b. The extracted Lewis numbers from
these three flame configurations are plotted in Fig. 30. It is
quite remarkable that they are very close to each other, as is
reasonable to expect. Furthermore, for the very lean and
very rich mixtures, their values are quite close to those
evaluated based on the diffusivities of H2 and O2 relative
to the mixture, 0.33 and 2.32, respectively. This seems to
support the original notion that although the reaction inter-
mediates are crucial elements in the flame structure, it is still
the diffusivities of the freestream reactants that control the
nonequidiffusive characteristics of stretched flames.

Fig. 30 also shows that whileLe appears to merge
smoothly with the limiting values 2.32 on the rich side, it

decreases rapidly to the limiting values of 0.33 on the lean
side. Such a disparate behavior is actually only a conse-
quence of the asymmetrical nature of the definition of the
equivalence ratiof , in thatf is bounded between 0 and 1
on the lean side, but is “stretched out” between 1 and∞ on
the rich side. To remove this definitional effect, in Fig. 30b
Le is plotted as a function of the normalized equivalence
ratio F � f=�1 1 f�; which is bounded between 0 and 0.5
on the lean side and 0.5 and 1 on the rich side. It is seen that
Le now varies in a more gradual manner between the two
limits.

In Fig. 30 we have also plotted the mixtureLe evaluated
using the expression derived by Joulin and Mitani [39] for a
two-reactant flame. The evaluation is somewhat involved
and the reader is referred to Ref. [26] for details. Such an
independent evaluation also yields close agreement with the
extracted values.

Fig. 31 presents the corresponding extractedLe for the
propane/air flame. The results are consistent with the above
discussion on hydrogen/air flames.

Knowing all the parameters discussed above, the response
of a stretched flame can be computed using the expressions
given in Eqs. (72)–(75). The evaluations should be quite
accurate, once the various parameters are extracted, as has
been carried out for the hydrogen/air and propane/air flames
presented here [26]. A more direct approach, however, is to
simply extract a global parameter representing the effects of
stretch. For example, the upstream flame speed is given by
Eq. (55). Thus once the Markstein numberMa is known, for
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Fig. 27. Laminar flame speed of hydrogen/air and propane/air mixtures determined through linear extrapolation of stretched flame speeds of
counterflow, outwardly propagating, and inwardly propagating flame speeds. Note the mutual agreement as well as the agreement with
independently calculated laminar flame speeds.



a given unstretched flame, the stretched flame speed can be
evaluated for a given nondimensional stretch rateKa. This
bypasses the need to extractEa and Le because they are
lumped intoMa anyway. As such, there has been substantial
activity recently in the determination ofMa [21,22].

Two points are worth mentioning. First, it is more direct
to simply express the flame speed in terms of the raw,
dimensional, physical quantities as

su � so
u 1 Lk; �80�

whereL has the dimension of a length and can be called a
Markstein length. It is simply the slope in the plots of Figs.
14–19 for variations of eithersu or sb: The advantage of
using L and k over Ma and Ka is that they are precisely
defined while the magnitudes ofMa andKa depend on the
evaluation of the flame time and hence flame thickness
which can be quite uncertain, as discussed earlier. Thus

the reportedMa andKa in the literature can differ substan-
tially depending on the flame thickness adopted in the
nondimensionalization. This can convey different meanings
in assessing whether a given stretch is strong or weak, indi-
cated by whetherKa is greater or smaller than unity. Thus
before this uncertainty is clarified, it is better to using the
raw dimensional quantities in the comparison.

Secondly, Eq. (80) shows that the stretched flame expres-
sion is general, valid for flames under stretch of different
nature, whether it is due to flow nonuniformity, or flame
curvature, or flame unsteadiness. However, recent studies
have reported the need to use different Markstein numbers
of stretches of different nature [40]. The need to do so,
however, stems from the incorrect location at whichsu is
evaluated. That is,su in our general formulation represents
the flame speed at the upstream boundary of the flame,
which is located at a distancèT upstream of the reaction
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Fig. 28. Calculated (a) flame thicknesses using the gradient and the full-width-at-half-maximum definitions and (b) overall activation energy of
hydrogen/air flames.



zone. However, if the flame is treated as being infinitesi-
mally thin such that the stretch rates of different nature are
indeed evaluated at a flame surface, thensu should corre-
spond to the local flow velocity obtained by extrapolating
the upstream flow velocity from the location of the upstream
boundary to that of the (thin) reaction zone. Thus ifsu is
corrected for this effect, then the Markstein lengths for
flames of different nature indeed agree with each other
[26]. This is shown in Figs. 32 and 33 for hydrogen/air
and propane/air flames, respectively.

7. Simultaneous considerations of hydrodynamic and
flame stretch

Our discussion has demonstrated that while the hydrody-
namic stretch affects the geometry of the flame surface, the
flame stretch affects the flame structure. These effects, while
manifested at different scales, are intimately coupled. One
approach through which such a coupling can be effected is
the use of theG-equation, Eq. (12), with~su given by, say Eq.
(67), recognizing nevertheless that application of the various
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Fig. 29. Extrapolation procedure for the global Lewis number from various flame configurations.



concepts introduced in Section 6.3 could lead to quanti-
tatively more accurate results. In the following we shall
study two problems that clearly show the coupling and influ-
ences of these two stretch effects, namely the smoothing of
flame cusps identified in Section 3.2, and the possible
configurations of Bunsen flames. In the next section the
combined stretch analysis will also be applied to the
phenomena of flamefront instabilities.

7.1. Curvature-induced cusp broadening

In Section 3.2 we have shown the propensity of cusp
formation for wrinkled flame surfaces. The flame itself,
however, possesses an intrinsic response that tends to inhibit
cusp formation. As shown in Section 5.2, the upstream flame
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Fig. 30. Extracted global Lewis numbers for hydrogen/air mixtures
from various flame configurations.

Fig. 31. Extracted global Lewis numbers for propane/air mixtures
from various flame configurations.

Fig. 32. Extracted Markstein lengths for hydrogen/air mixtures from
various flame configurations.

Fig. 33. Extracted Markstein lengths for propane/air mixtures from
various flame configurations.



speed of an equidiffusive mixture in the presence of curva-
ture is modified from~su � 1 for the one-dimensional flame
to

~su � 1 2 `o
T7·n: �81�

Using this curvature-affected flame speed expression in the
G-equation, with v� 0 for the quiescent flow example, we
have [29]

2ĝ
2t̂

1
ĝ

�1 1 ĝ2�1=2
2ĝ
2x̂
� 2

2x̂

^̀o
T

�1 1 ĝ2�
2ĝ
2x̂

" #
; �82�

which governs the evolution of the flame surface. Compar-
ing Eq. (82) with Eq. (16), we see that the additional,
second-order term assumes the role of viscous action,
with a corresponding “viscosity coefficient”, given by
~̀o
T=�1 1 ĝ2�; that tends to smooth the cusp. Physically,

since the negative flame curvature associated with the reced-
ing, trough region of the flame (Fig. 34) enhances the flame
speed�~su . 1�; while the positive curvature in the protrud-
ing, crest region tends to reduce the flame speed�~su , 1�;
the aggravating tendency for the flame segment in the trough
region to collide is moderated.

For weakly wrinkled flames�ĝ p 1�; Eq. (82) simplifies

to

2ĝ
2t̂

1 ĝ
2ĝ
2x̂
� ^̀o

T
22ĝ

2x̂2 ; �83�

which is the Burgers equation. Analytical solutions are
available for this well-known equation.

For nonequidiffusive mixtures, the flame speed will be
further affected by the stretch terms , which can be either
positive or negative depending on the nature of stretch and
nonequidiffusion. Thus following similar reasoning for the
burning intensity of Bunsen flames (Fig. 7b), for the present
wrinkled flame we expect that the tendency to form sharp
segments is, respectively, moderated and aggravated for
Le . 1 and,1 mixtures. Furthermore, when the burning
intensity in the trough region is reduced by flame stretch,
local extinction may also occur, leading to the formation of
“holes” over the flame surface. We shall next demonstrate
these phenomena by considering the opening of the Bunsen
tip.

7.2. Inversion and tip opening of Bunsen flames

We consider the steady-state configuration of a two-
dimensional Bunsen flame situated in a uniform flow of
velocity v � �0; v� [41,42]. With V f � 0; space variables
nondimensionalized bỳ o

T; ~G� ~x; ~y� � ~y 2 ~f � ~x�; and using
the stretch-affected flame speed given by Eq. (67), theG-
equation becomes

d~g
d~x
� �1 1 ~g2�3=2��1 1 ~g2�1=2 2 ~v�

�1 1 ~g2�1=2 2 Ma~v
; �84�

which describes the flame configuration for given Markstein
number and flow velocity. For this problem we have found it
more convenient to reference quantities to the flame scale
instead of the hydrodynamic scale. The reason being that the
hydrodynamic scale here is the curvature of the flame tip,
which however is a response of the analysis. Furthermore,
the present reference facilitates analysis of the flame struc-
ture and extinction.

Although Eq. (84) can be integrated to yield an analytical
solution, the characteristic of the flame configuration can be
more clearly illuminated by using the critical-point analysis.
Thus setting the numerator and denominator of Eq. (84) to
zero, we obtain the critical points

~g†
^ � ^�~v2 2 1�1=2 and ~gp

^ � ^��Ma~v�2 2 1�1=2: �85�
The particular value of~g^ � ~g†

^ corresponds to the Landau
limit, which describes the slope of the flame shoulder as
shown in Fig. 35 for an open-tipped Bunsen flame. It is
also clear that~g†

2 , ~g , ~g†
1: Further setting~gp

^ � 0 and
~gp
^ � ~g†

^, respectively, yields the following two critical
Markstein numbers

Ma1 � 1
~v

and Ma2 � 1; �86�

where 0, Ma1 , Ma2 � 1:
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Fig. 34. Schematic showing the smoothing effects of curvature on
wrinkled flames.

Fig. 35. Analytical prediction of the configuration of an open-tipped
Bunsen flame.



Based on the above critical Markstein numbers, the
following observations can be made regarding the possible
configurations of Bunsen flames. First,

d~g
d~x

. 0 for Ma . Ma2 �87a�

d~g
d~x

, 0 for Ma , Ma1: �87b�

Recognizing that d~g=d~x is the second derivative of the flame
shape function (87a) and (87b) then respectively define
regimes for the existence of inverted Bunsen flames and
normal Bunsen flames, as shown in Fig. 36. The prediction
of inverted Bunsen flames [41,42] is of particular interest
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Fig. 36. Regimes with different Bunsen-type flame configurations as functions of flow velocity and Markstein number.

Fig. 37. Frontal and planar photographic images of a polyhedral rich propane/air flame.



because they have not been experimentally observed. This is
not surprising because special stabilization mechanisms are
probably needed to hold such freely propagating flames at
the base of its shoulder.

In the regime Ma1 , Ma , 1; the behavior is more
complex:

d~g
d~x

, 0 when ~g†
2 , ~g , ~gp

2

d~g
d~x

. 0 when ~gp
2 , ~g , ~gp

1 �88�

d~g
d~x

, 0 when ~gp
1 , ~g , ~g†

1:

In this intermediate regime of the Markstein number, the
differential equation is singular at~g� ~gp

^; where u ~gp
^u ,

u ~g†
^u: Consequently, integration starting from~g� ~g†

^ at the
shoulder will stop at~gp

^: The flame front takes the shape of
an open tip Bunsen flame which is concave towards the
unburnt mixture (Figs. 35 and 36). Moreover, since increas-
ing either Ma or ~v causesu ~gp

^u to increase, the opening
becomes wider with the increasing flow velocity and
decreasing mixture diffusivity. The above characteristics
of tip opening have all been experimentally observed [35].

8. Flamefront cellular instabilities

Perhaps one of the most beautiful and fascinating
phenomena in flame dynamics is the presence of instabilities
in the form of cells and ridges of characteristic sizes over the
flame surface. These non-planar flame patterns, which
represent alternating regions of intensified and weakened
burning, can be either stationary or non-stationary; in the
latter case they can also be either steadily or chaotically
evolving [4,6,43,44].

The earliest observation of flamefront instability is that of
the polyhedral flame, manifested by the presence of regu-
larly spaced ridges over a Bunsen flame in which the defi-
cient reactant is also the lighter one. Fig. 37 shows the front
and top views of such a flame, obtained by burning a rich
propane/air mixture. The flame pattern consists of petals of
flame surfaces separated by extinguished regions of ridges,
with the petals being convex towards the unburnt mixture.
For a given tube diameter, the number of ridges varies with
the mixture concentration and the flow velocity [45].
Furthermore, the polyhedral pattern can also spin about its
vertical axis, with a circumferential speed that sometimes
can even exceed the laminar flame speed of the mixture. The
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Fig. 38. Photographic image of a cellular rich propane/air/nitrogen
flame. Adapted from Ref. [2].

Fig. 39. Photographic images of expanding flames of: (a) lean butane/air; and (b) lean hydrogen/air mixtures, showing that the former is
cellularly stable while the latter cellularly unstable.



spinning, however, does not appear to have any preference
for either the clockwise or counter-clockwise direction. It is
also seen that the tip is extinguished for the presentLe , 1;
negatively stretched flame in accordance with the discus-
sions in the previous section.

Fig. 38 shows the cellular pattern of a rich propane/air/
nitrogen mixtures burning in a quasi-stabilized manner in
vertical wide tubes of about 10 cm in diameter [2]. The cells
are typically centimeter in size, being one order larger than
the thickness of the flame, and were observed to be in
continuous motion, consisting of the growth of large cells
at the expense of smaller ones. These large cells would then
split up into two or more smaller ones. The cells are again

convex towards the unburnt mixture. Ref. [46] shows the
time-resolved development of the cells as the flame propa-
gates outward, at atmospheric as well as elevated pressure
environments.

Finally, Fig. 39 shows outwardly propagating flames in a
low-speed laminar flow, initiated by a spark discharge [47].
It is seen that the lean butane/air flame is largely cellularly
stable, except for some large-scale sharp folds that we shall
discuss later, while the lean hydrogen/air flame is clearly
cellularly unstable.

We shall now present the phenomenology of the different
modes of the observed cellular instability.

8.1. Phenomenology

From our understanding of the behavior of nonequidiffu-
sive stretched flames, it is reasonable to expect that those
cellular flame phenomena that depend on whether the
mixture is lean or rich must in turn depend on the diffusive
aspects of the flame, and thereby the flame structure itself.
Indeed, if we perturb an initially planar flame into one
consisting of alternating convex and concave segments
towards the unburnt mixture (Fig. 40), then the subsequent
evolution of these flame segments can be considered in the
same manner as that for the intensification or weakening of
the Bunsen flame tip (Fig. 7b). Specifically, for aLe . 1
flame, the burning is intensified at the concave segment and
weakened at the convex segment, leading to smoothing of
the wrinkles. Consequently such a flame is cellularly stable.
Conversely, by the same reasoning anLe , 1 flame is cellu-
larly unstable. This phenomenon can of course also be inter-
preted on the basis of the different diffusivities of the
deficient and abundant species. We shall call this mode of
instability as the nonequidiffusive instability. Since the
instability is caused by the active modification of the
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Fig. 40. Schematic showing the mechanism of diffusional–thermal
cellular instability.

Fig. 41. Schematic showing the mechanism of hydrodynamic cellular instability.



diffusive structure of the flame, the cell size is expected to be
one order larger than the flame thickness, as experimentally
observed.

In addition to nonequidiffusion, we have shown that the
upstream flame speed can also be modified by pure curva-
ture effects. Thus if we again consider Fig. 40, but for an
equidiffusive mixture, it is apparent that since the flame
speed is reduced for the convex segment and increased for
the concave segment, curvature tends to stabilize the
flame. This is expected to shift the stability boundary
based on nonequidiffusion considerations away from
Le� 1 to smaller values ofLe. We shall call the
combined nonequidiffusive and pure curvature instabilities
as the diffusional–thermal instability.

Cells of much larger sizes, of the order of 10 cm for
atmospheric flames, have also been observed for large
scale flames which are cellularly stable in terms of the
diffusive–thermal instability; an example is the sharp
folds shown in Fig. 39b. Since the scale of the cells is
now much larger than the flame thickness, one may expect
that the cause of flamefront instability is hydrodynamic
instead of diffusive-thermal in nature. To identify the
mechanism associated with this hydrodynamic instability,
let us again perturb a planar flame (Fig. 41), recognizing
that the flame thickness is now much smaller than the extent
of wrinkling such that the flame structure is minimally
affected. We can therefore treat the entire flame as a surface,
with the flame speedsu remaining at its unperturbed value,
so
u; and that the gas densities for the upstream and down-

stream regions at their respective unburnt and burnt values,
ru andro

b: Further recognizing that the areas of the stream-
tube should remain the same both far upstream and down-
stream of the flame because of the lack of disturbance there,
that because the normal component of the downstream flow
velocity at the flame surface is larger than that of the
upstream velocity due to thermal expansion, and that the
tangential components of the upstream and downstream
velocities should be continuous, the streamlines must there-
fore assume the pattern as shown. Thus for the convex
segment of the flame, the widening of the streamtube
upon approaching the flame causes the flow to slow down.
However, since the flame speed remains unaffected, the
local velocities of the approach flow and the flame can no
longer balance each other in the manner of the planar config-
uration. This then results in further advancement of the
convex segment into the unburnt mixture. A similar argu-
ment for the concave segment shows that it will further
recede into the burnt mixture. Thus this hydrodynamic
mode of instability is absolutely unstable. Furthermore,
since the above discussion does not involve any length
scales, we expect that the flame is unstable to perturbations
of all wavelengths. This hydrodynamic instability is also
called Landau–Darrieus instability.

A third mode of flamefront instability is that of Rayleigh–
Taylor for fluids which have negative density stratification
in the direction of a body force such as gravity. Thus an

upwardly propagating flame is buoyantly unstable because
the denser, unburnt mixture is over the lighter, burnt
product, while the converse holds for a downwardly propa-
gating flame. Furthermore, since an accelerating flame
experiences a body force directed from the unburnt to the
burnt mixtures, it is also subjected to this mode of body
force instability.

8.2. Analysis

Because of the disparate scales associated with hydrody-
namic and diffusive–thermal instabilities, a general analysis
can be mathematically quite involved [44,48]. Thus it has
been found expedient to separately analyze their linear
stability in terms of the stability boundaries and the disper-
sion relations. Thus for the hydrodynamic instability,
Landau and Darrieus [4] treated the flame as a surface of
discontinuity moving with the constant laminar flame speed
so
u everywhere over its surface, viz. the Landau limit of flame

propagation. Since diffusive transport is suppressed, the
density remains constant on either side of the flame sheet
while variations of the flow velocity and pressure are
described by the Euler equation. For the diffusive–thermal
instability, an analysis of the flame structure is necessary
and frequently the assumption of constant density, which
implies small heat release, is made to facilitate the analysis.

In the following we shall adopt an approximate, though
analytically and conceptually more apparent, analysis which
incorporates the three modes of instabilities mentioned
above. The approach, first used by Markstein [2], involves
analyzing the stability of flame surfaces in the manner of
Landau and Darrieus, but allowing the flame speed to be
affected by flame stretch. Consequently both the large-scale
hydrodynamic and body-force instabilities, and the small-
scale diffusive–thermal instabilities, are captured. The
analysis is that of linear stability, relevant for the initial
growth of the disturbance and hence small departure of
the flame surface configuration from the planar one. Such
an analysis yields the stability boundaries and the dispersion
relations of a given system. For simplicity we shall also
restrict the analysis to two-dimensional disturbances.

The analysis involves applying a small disturbance to a
planar flame, and determining whether this disturbance will
cause the instantaneous flame surfacef(x, t), along with
other quantities, to grow or decay.

On the unburnt and burnt sides of the flame, respectively
designated by the subscripts (2) and (1), the densities are
uniform, given by

r̂2 � r̂u � 1 and r̂1 � r̂o
b � bo , 1; �89�

wherebo � 1=�1 1 ~qc� is the density ratio. The velocity and
pressure variations for the inviscid and incompressible flows
are governed by continuity and the Euler equation

7̂·~v7 � 0 �90�
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r̂7

2 ~v7

2t̂
1 ~v7·7̂ ~v7

� �
� 27̂ ~p7 1 r̂7ĝeg; �91�

whereeg is the unit vector in the direction of gravity. In the
above, length, velocity, time,r , p, g and the heat of reaction
~qc are, respectively, nondimensionalized by the physical
quantities `H; so

u; `H=s
o
u; ru; ru�so

u�2; �so
u�2=`H and

cpTu=Yu: We further require that the upstream and down-
stream solutions must be bounded asŷ! ^∞; and that
they are related to each other across the flame sheet
through the conservation of mass and the normal and
tangential momenta:

�r̂� ~v 2 ~V�·n� � 0; �92�

�r̂� ~v 2 ~V�·n� ~v·n�1 ~p 2 r̂ ĝ� f̂ 2 ŷ�� � 0; �93�

� ~v × n� � 0; �94�
where �f� � f� ŷ� f̂ 1�2 f� ŷ� f̂ 2� for the quantityf .
The jump relation (94) states that the tangential
components of the velocities are continuous across the
flame.

The problem is completed by specifying the upstream
flame speed,~su; needed for theG-equation. Landau and
Darrieus assumed~su � 1: We shall, however, use the
general expression for the stretched flame, Eq. (67). When
expressed in the hydrodynamic scale`H; this expression can
be written as

~su � 1 1 ^̀o
T�27̂·n 1 MaK̂a�; �95�

where the Karlovitz number̂Ka is now measured in units of
`H and therefore differs from the previous definition by the
factor ~̀o

T � `o
T=`H; which compares the flame thickness to

the hydrodynamic scale.
The steady one-dimensional solution of the above

problem, corresponding to a planar flame front with the
velocity field ~v � ~v0 � � ~u0; 0�; is given by

~u0 �
1

1 1 ~qc

;

(
~p0 �

2ĝŷ ŷ , 0

2 ~qc 2 ĝŷ=�1 1 ~qc� ŷ . 0

(
; �96�

where the subscript “0” designates this basic solution,ĝ . 0
corresponds to a downward propagating flame, and we have
also located the planar flame front atŷ� 0:

To perform a linear stability analysis to determine the
response of this solution to small arbitrary disturbances,
we represent the disturbed quantities as~v � ~v0 1 ~v 0, ~p�

~p0 1 ~p0; andf̂ ; f̂ ; where~v 0 � � ~u0; ~v0� and the perturbations
are assumed to be small compared to the basic state solution.

Substituting these expressions into Eqs. (90) and (91), and
linearizing about the basic state, we obtain

7̂·~v 07 � 2 ~u07
2x̂

1
2 ~v07
2ŷ
� 0 �97�

r̂7

2 ~v 07
2t̂

1 ~v0;7·7̂ ~v 07 1 ~v 07·7̂ ~v0;7

 !
� 27̂ ~p07: �98�

Similar linearization of the flame speed expression (95), the
G-equation (12), and the jump relations (92)–(94) then
respectively yield

~su � 1 2 ^̀o
T
22f̂

2x̂2 1 ^̀o
TMa

22f̂

2x̂2 � 1 2 �1 2 Ma� ^̀oT 22f̂

2x̂2

�99�

~u02�0� � 2f̂
2t̂

2 �1 2 Ma� ^̀oT 22f̂

2x̂2 �100�

� ~u0� � 2 ~qc�1 2 Ma� ^̀oT 22f̂

2x̂2 �101�

� ~p0� � 2~qc�1 2 Ma� ^̀oT 22f̂

2x̂2 2
ĝ~qc

~f
�1 1 ~qc� �102�

~qc
2f̂
2x̂

1 � ~v0� � 0: �103�

To solve Eqs. (96) and (98) subject to Eqs. (99)–(103), we
look for solution of the form

~u07 � �~u7� ŷ� exp�v̂ t̂ 1 ik̂x̂�; ~v07 � �~v7� ŷ� exp�v̂ t̂ 1 ik̂x̂�

~p07 � �~p7�ŷ� exp�v̂ t̂ 1 ik̂x̂�; f̂�Â exp�v̂ t̂ 1 ik̂x̂�: �104�
The solution procedure is straightforward. It can thus be
shown that for a nontrivial solution to exist,v̂ must satisfy
the following dispersion relation

�2 1 ~qc�v̂2 1 2�1 1 ~qc�k̂v̂

2 ~qc�1 1 ~qc�k̂ k̂ 2
2�1 2 Ma� ^̀oT�1 1 ~qc�

~qc
k̂2 2

ĝ
�1 1 ~qc�

( )
� 0;

�105�

which possesses two roots. The first has a negative real part,
and therefore it does not predict instability. The second root
is given by

We now study the implication of the dispersion relation
(106) for the real values of̂v :
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v̂ � �1 1 ~qc�
�2 1 ~qc� 2k̂ 1

������������������������������������������������������������������������������
1 1

~qc�2 1 ~qc�
�1 1 ~qc�

� �
k̂2 2 2�2 1 ~qc��1 2 Ma�l̂ o

Tk̂3 2
~qc�2 1 ~qc�
�1 1 ~qc�2

ĝk̂

s( )
: �106�



We first examine the Landau limit, corresponding to the
hydrodynamic instability. Setting ^̀o

T ; 0 and ĝ� 0,
Eq. (106) becomes

v̂ � �1 1 q̂c�
�2 1 q̂c� 21 1

��������������������
1 1

q̂c�2 1 q̂c�
�1 1 q̂c�

s( )
k̂: �107�

Sincev̂ . 0 for all q̂c . 0; Eq. (107) shows that the flame is
unconditionally unstable to disturbances of all wavelengths.
As discussed earlier, this mode of hydrodynamic instability
is caused by the thermal expansion of the gas upon crossing
the flame. Consequently, the instability grows faster with
increasing ~qc and hence thermal expansion, as shown in
Fig. 42.

Since smooth laminar flames are routinely observed in
the laboratory, there must exist alternate mechanisms that
can counteract the hydrodynamic instability and thereby
stabilize the flame surface. One such mechanism is buoy-
ancy. Specifically, for an upward propagating flame in the
presence of gravity,̂g, 0 and we again havêv . 0 from
Eq. (106) for ^̀oT ; 0: Such flames are exposed to both the

hydrodynamic instability as well as the body-force,
Rayleigh–Taylor instability. However, for a downward
propagating flame,̂g . 0 and the above root possesses
both real and imaginary parts. The real part passes through
zero at the critical valuêkg � ĝ=�1 1 ~qc�: Since in the radical
term the gravity term varies witĥk while the thermal
expansion term varies witĥk2

; the gravity term dominates
for small k̂: The flame is therefore unstable to short wave-
length disturbances witĥk . k̂g; and stable to long wave
disturbances witĥk , k̂g; as shown in Fig. 43. Thus buoyancy
can stabilize long wave disturbances for downwardly
propagating flames.

We next study the pure flame curvature effect by
setting Ma� 0 (and ĝ� 0) in Eq. (106). It is seen
that the term representing its influence in the radical
term is always negative, and hence tends to moderate
the destabilizing effect of thermal expansion. Further-
more, since this curvature term varies witĥk3 as
compared to thêk2 variation of the thermal expansion
term, we expect that the flame is rendered stable by
curvature for short wave disturbances witĥk . k̂n �
~qc=�2 ^̀o

T�1 1 ~qc��; as shown in Fig. 44. This is in agree-
ment with our earlier anticipations.

We finally study the nonequidiffusive instability, as
determined by the term in Eq. (106) with the factor
Ma� �Le21 2 1�=2eo

: Since this term is positive for
Ma . 0 and hence Le , 1; the flame is rendered
unstable forLe , 1 mixtures. The converse holds for
Le . 1 mixtures. Stability is promoted for short wave
disturbances in the same manner as the pure curvature
effect. All these results are again in agreement with our
earlier discussions.

By combining the pure curvature and nonequidiffusive
effects as represented by the factor (12 Ma) for the
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Fig. 42. Stability diagram for the hydrodynamic instability.

Fig. 43. Stability diagram for the hydrodynamic instability in the
presence of a stabilizing body force.

Fig. 44. Stability diagram showing the stabilizing influence of the
pure curvature effect on the hydrodynamic instability.



diffusive–thermal instability, it is clear that their influence is
destabilizing forMa . 1; or Le , 1=�1 1 2eo� < �1 2 2eo�;
and stabilizing otherwise. Thus the pure curvature effect
extends the regime of stabilizing Lewis number by 2eo in
that, without considering it, the flame will lose stability for
Le , 1:

In summary, we have shown that while thermal expansion
is destabilizing for all wavelengths, its effects can be coun-
teracted by those of other processes. For long wave dis-
turbances, relevant for large-scale flame phenomena,
buoyancy provides a stabilizing influence when the flame
propagates downward. For short wave disturbances, pure

curvature is always stabilizing. This tendency is further
enhanced for mixtures whoseLe is larger than 12 2eo

:

8.3. Additional considerations

There are two other major processes which can affect the
flame burning rate and hence its propensity to destabilize.
The first is heat loss. Diffusional-thermal stability analyses
have been performed for the doubly infinite flame with volu-
metric heat loss [49]. Results show that such a heat loss
tends to increase the critical Lewis number of stability
from the adiabatic value of 12 2eo

; and hence narrows
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Fig. 45. Numerical simulation of the cellular flame structure exhibiting: (a) diffusional–thermal instability; and (b) hydrodynamic instability.
Note the chaotic nature of the former and the regular folds of the latter.

Fig. 46. Location of an oscillated counterflow methane/air flame, showing the reduced response with increasing frequency.



the regime of stability. This outcome is reasonable if we
consider that the effect of heat loss from the flame is to
reduce the flame temperature and hence the rate of heat
diffusion. Since the mass diffusion rate is fixed, the flame
is rendered unstable.

The second process is bulk aerodynamic stretching,
which has been found to be stabilizing if it is positive,
and destabilizing if otherwise [50,51]. Conceptually, a
positively stretched flame such as the counterflow flame
and the outwardly expanding flame tends to continu-
ously “stretch out” and “carry away” any wrinkles
which may develop over the flame surface. Experimen-
tally it has been found for stagnation flows that for low
rates of stretch, the flame exhibits the same cellular
structure as observed for non-stretched flames. However,
with increasing stretch, the instability in the radial
direction is first suppressed, resulting in ridges emanat-
ing in the radial direction. With strong enough stretch-
ing, even these radial ridges are suppressed. By the
same reasoning, we then expect that flamefront instabil-
ity tend to be aggravated in a compressive flow whose
stretch is negative.

The linear stability analysis discussed above only
describes the initial response of the flame. Nonlinear
analyses, frequently aided by numerical solutions, are
needed to trace through the development of the
instabilities until the formation of the cellular flame
pattern. Such numerical simulation [48] have found
that diffusive-thermal instability generates cells of a
chaotic nature (Fig. 45a), while hydrodynamic instabil-
ity generates steady cells of regular sizes and shapes

(Fig. 45b). It has thus been suggested that diffusive–
thermal instability can lead to self-turbulization of a
flame.

9. Unsteady dynamics

The review so far has been concerned with steady state or
quasi-steady flames, such as the counterflow and Bunsen
flames for the former, and the spherically propagating
flame for the latter. In this section we shall discuss flame
dynamics which are oscillatory in nature and hence are
fundamentally unsteady. The oscillatory response can be
either caused by externally applied, forced oscillatory
motion [52–56], or is intrinsic in the flame propagation
mode [57–64].

9.1. Forced oscillation

Studies of effects of aerodynamic oscillation on the
response of strained laminar flames are of relevance to the
understanding of turbulent flames and acoustic combustion
instabilities. Since flamelets constituting the bulk flame are
subjected to fluctuating flows with various intensities of
straining, it is reasonable to expect that they would respond
differently in an oscillating strained flow field than a steady
strained flow field.

There are two parameters that characterize the influence
of flow oscillation, namely the frequency of the oscillation
as compared to (the inverse of) the characteristic flame time,
and the amplitude of the oscillation. Fig. 46 shows the
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Fig. 47. Thickness of the oscillated counterflow methane/air flame of Fig. 46, showing its insensitivity to oscillations at all frequencies.



temporal variation of the location of a counterflow, near-
equidiffusive, methane/air flame withf � 1; when it is
subjected to an oscillation amplitude of approximately 0.5
relative to a steady strain rate. Since a premixed flame can
freely adjust its location in response to changes in the flow
so as to achieve dynamic balance, provided there is enough
time to achieve the re-location, Fig. 46 shows that for low
frequencies the flame indeed translates readily and hence

exhibits large movements. However, for high-frequency
oscillation, the flame does not have enough time to adjust
to changes in the flow field and its movement is considerably
restrained.

Fig. 47 shows the corresponding variation of the flame
thickness in terms of the FWHM value. It is seen that the
flame thickness is not sensitive to the oscillation frequency
for all frequencies. This interesting behavior is because of
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Fig. 48. Phase relations between imposed strain and flame burning intensity: (a) out of phase forLe . 1 flames; (b) in phase forLe , 1 flames.



the fact that, for a near-equidiffusive mixture, the flame
thickness is basically invariant to strain rate variations in
the steady, and hence low frequency limit, while it is also
insensitive to high frequency oscillations because of the
reduced response time.

The effects of nonequidiffusion are illustrated in Fig. 48
for two mixtures whose Lewis numbers are, respectively,
larger and smaller than unity. It is seen that while the maxi-
mum flame temperature and heat release rate are out of
phase with the imposed oscillatory strain rate for theLe .
1 flame, the behavior is reversed for theLe , 1 flame. This
result is in agreement with the understanding from the
steady state response that shows that, for mixtures withLe

greater or smaller than unity, the burning intensity,
respectively, decreases and increases with increasing strain
rate. The practical implications of this result in combustion
instability within combustion chambers can be quite
significant.

Based on the concept ofquasi-steadiness, an oscillating
flame extinguishes if the instantaneous strain rate increases
beyond the steady-state extinction strain rate at any instant
during a cycle of oscillation. On the other hand, when such a
state is not attained during the cycle, then extinction cannot
be achieved. As a result, if quasi-steady extinction were to
occur, it must occur during the first cycle. Fig. 49 demon-
strates that, for a nitrogen-diluted, stoichiometric methane/
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Fig. 49. Cycle variations of maximum flame temperature,Tmax, with various frequencies of oscillation, for a nitrogen-diluted stoichiometric
methane mixture, whose mole fraction is methane:oxygen:nitrogen� 1:2:12.12, with 0.65 amplitude perturbation.

Fig. 50. Schematic showing the mechanism of diffusional–thermal pulsating instability: (a)Le . 1 (unstable); (b)Le , 1 (stable).



air mixture and given amplitude fraction of 0.65, extinction
occurs within one cycle for anf � 100 Hz oscillation.
However, extinction is delayed with increasing frequency
(e.g.f � 250 Hz� in that the system can persist over several
cycles, with progressive reduction in the peak flame
temperature, before extinction takes place. With even higher
frequencies, for examplef � 500 Hz; the unsteady flame
eventually achieves permanent oscillation without extinc-
tion. Thus, quasi-steadiness obviously does not hold for
the imposition of high-frequency oscillation.

9.2. Intrinsic pulsating instability

In addition to cellular instability, a flame can also propa-
gate in a pulsating or spinning mode due to temporal
instability. The controlling factor in inducing the pulsating
instability is again diffusional-thermal in nature, and the
mechanism is depicted in Fig. 50, for a planar flame. Speci-
fically, consider a disturbance momentarily applied to the
reaction zone, causing it to move forward. Because of the
larger inertia of the thermal and mass diffusion zones
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Fig. 51. Various pulsating modes for near-limit rich hydrogen/air flames.

Fig. 52. Trajectory of steady and pulsating flames, showing slower propagation rate for the latter.



relative to that of the reaction zone, the flame structure and
hence thickness cannot instantaneous relax to accommodate
such a disturbance. Consequently the diffusion zone
becomes thinner, and the corresponding temperature and
concentration gradients also steepen. For anLe . 1 flame,
since the thermal diffusion zone is initially thicker than the
mass diffusion zone, a reduction of their respective thick-
nesses by the same amount implies that the thermal gradient
suffers relatively less steepening than the concentration
gradient. Thus the reaction becomes stronger because it
now gains more reactant from the freestream than loses
heat to it, causing it to further move forward. By the same
reasoning, if the reaction zone is displaced backward, the
burning will be weakened, causing it to further lag behind.
ThusLe . 1 flames can be pulsatingly unstable. Similarly it
can be reasoned thatLe , 1 flames are pulsatingly stable.
This dependence onLe is completely opposite to that of
cellular diffusional–thermal instability in that cellular
instability is promoted forLe , 1 flames and suppressed
for Le . 1 flames.

Asymptotic analysis assuming negligible heat release
[58] shows that a flame is pulsatingly unstable forZe�Le2
1� . 4�1 1

��
3
p � < 10:9; which we shall call the Sivashinsky

criterion. SinceZefor many practical flames are actually not
too large, typically smaller than six or seven, and sinceLe
for gaseous mixtures are close to unity, the tendency for
gaseous flames to exhibit pulsating instability is actually
not strong. Thus studies of pulsating instability have focused
on solid flames [43,65–71] which are of interest to materials
synthesis, for whichLe is very large. Here pulsating or
spinning modes of propagation are frequently observed,
resulting in undesirable laminated synthesized products.

Recently the possible existence of pulsating instability in

gaseous mixtures has regained interest [60–64] for weakly
burning flames, especially in its role in causing flame extinc-
tion. That is, when a flame is near the extinction state, its
global activation energy and henceZe are expected to
increase substantially such that the Shivashinsky criterion
can be satisfied. The possible onset of pulsating instabil-
ity near the extinction state can have profound impact
on our understanding of the extinction mechanism and
prediction of the extinction limit. For example, if a
flame is susceptible to pulsating instability, will it extin-
guish in steadily or pulsatingly propagating mode? If it
is the latter, will the steady extinction limit be widened
or contracted?

The above possibility has been computationally investi-
gated for the planar freely propagating rich hydrogen/air
flames with radiative heat loss [63,64]. A steady state calcu-
lation allowing for radiative heat loss shows that the flame
extinguishes atf � 10:4 through the turning point criterion.
However, when unsteadiness is allowed in the calculation, a
rich variety of propagation modes is captured, as shown in
Fig. 51. It is seen that while atf � 7:3 the flame is still
stable, atf � 7:4 it loses stability and propagates in an
oscillatory mode, with a single frequency. The overall
propagation rate, however, is slower, as shown in Fig. 52,
because the flame spends more time in the negative phase of
the oscillation than the positive phase. Atf � 7:6 the propa-
gation mode transitions to that of period doubling, with two
frequencies. Finally, the flame fails to propagate atf � 7:8:
These results clearly show that the flame extinguishes in the
pulsating mode, and that the extinction limit is narrowed due
to pulsation. The reason that pulsation promotes extinction
is that while the positive phase of the oscillation enhances
the intensity of the flame that is already burning anyway, the
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Fig. 53. Calculated pulsating stability and extinction boundaries of rich hydrogen/air flames from 1 to 20 atm.



negative phase can reduce the burning intensity to a state of
temporary extinction which, however, is unrecoverable.

By using globally extractedEa andLe, it has been found
that the computationally calculated limit at which the flame
becomes unstable agrees closely with that given by the
Shivashinsky criterion. Furthermore, it is also recognized
that the net effect of the hydrogen oxidation mechanism is
quite nonlinear in that, for a given temperature, by pro-
gressively increasing the pressure the reaction intensity is
first weakened through the H1 O2 chemistry, and then
enhanced through the HO2 and H2O2 chemistry. As such,
it is reasonable to expect that, with increasing pressure, the
global Ea will first increase and then decrease. This in turn
implies that the propensity to pulsate will first increase and
then decrease. Fig. 53 [64] shows the calculated stability
diagram in terms off and pressure, indicating the respec-
tive limits for the onset of pulsation, extinction in the steady
mode, and extinction in the pulsating mode. It is seen that
while pulsation is indeed promoted with increasing pressure
for the lower pressure range, a regime of stability is identi-
fied at higher pressures.

While rich hydrogen/air mixtures may not be too practi-
cally relevant, except perhaps in the mixing region of a
nonpremixed hydrogen/air system, further studies [72]
have shown that pulsating instability also occurs for lean
heptane/air flames. Consequently, the practical implications
of pulsation, and hence pulsation induced flame extinction,
take on a new dimension of importance.

Finally, it has also been found that positive stretch, in the
form of counterflow [73] or outwardly propagating flames
[74], promotes pulsation while negative stretch, in form of
inwardly propagating flames [75], suppresses it. This is
completely opposite to the effects of stretch on cellular
flames.

10. Concluding remarks

The present review has demonstrated that there now
exists a basic framework for the description of the dynamics
and geometry of flame surfaces in general flow fields, and
consequently a solution procedure for chemically reacting
flows in which the nonequilibrium processes of diffusion
and reaction take place through laminar flamelets. This is
achieved by incorporating theG-equation as part of the
solution for the conservation equations of heat, mass, and
momentum, treating the flame surfaces, known as flamelets,
as sources of heat and sinks for reactants. These flamelets
actively propagate with stretch-affected velocities, and at
the same time are also passively convected by the local
dynamics of the flow.

We have also shown that this description, at both the
linear level of flame propagation and nonlinear level of
flame extinction, can be made quantitatively accurate, and
hence meaningful, by using such global flame parameters as
the unstretched flame speedso

u; the flame thickness, the acti-

vation energy, the Lewis number, and the Markstein length.
These global flame parameters are defined and can be
empirically determined, either experimentally or computa-
tionally, if the chemical kinetic mechanism is known for a
fuel/oxidizer system and a given thermodynamic state of
temperature, pressure, and reactant concentration.

The materials presented in this review demonstrate the
significant progress that has been made on the structure
and dynamics of laminar premixed flames in the past 25
years or so. There are, however, still some crucial issues
that require further investigation. Some of them are
discussed in the following.

1. The quasi-one-dimensional analysis shows that the
temperature of a nonequidiffusive stretched flame can
deviate from the adiabatic flame temperature due to the
local stratification of the energy and species contents
from the freestream values. This stratification occurs
within the transport zone and the changes in these
contents are supposed to be transported in the tangential
direction of the flame segment under consideration. One
would then expect that they would eventually cross the
reaction zone at some neighboring flame segments. In
other words, while total energy conservation based on
the freestream values may not hold locally, it must hold
when summed over the entire flame surface. In particular,
segments of energy deficit must be balanced by segments
of energy excess for overall energy conservation.
However, experimental results on, say the counterflow
and Bunsen flames, seem to show that the same stretch-
affected behavior prevails throughout the entire flame
surface. This “unpleasant” result, even at the conceptual
level, needs to be resolved. A satisfactory investigation
may require two-dimensional analysis.

2. Most analyses on stretched flames have assumed quasi-
steadiness in the flame structure. There are, however,
strong transients in combustion processes that can intrude
into the flame structure. Examples are pressure and
velocity oscillations within combustion chambers in the
form of combustion instabilities, and high-intensity
turbulent flows in which the local conditions fluctuate
rapidly. We also note that our analysis of the flamefront
instability using theG-equation and the quasi-steady
stretched flame expression did not capture pulsating
instability. Results from recent studies on unsteady
flame dynamics, some of them are discussed in this
review, need to be integrated into the description of
flame dynamics in an essential manner.

3. Practically all of the previous analytical and computa-
tional studies based on theG-equation have neglected
density variations across the flame. While this assump-
tion decouples the description of the flame dynamics
from that of the flow field, it is clearly not satisfactory
considering the significant density jump across the flame
due to the large amount of heat release. This restriction
needs to be removed. Computationally, special numerical
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front-tracking techniques need to be developed to
describe the flamefrot movement in complex flow
fields.

4. Laminar flamelet is a meaningful concept only if the
flame thickness is much thinner than that of the aerody-
namic scale. In a turbulent flow this would require that
the flame thickness be smaller than the Kolmogorov scale
of the turbulence, which may not be always satisfied. To
circumvent this difficulty, we may treat the much thinner
reaction zone as theG surface, and let the preheat zone be
part of the flow field to be calculated. It may be noted that
generalized jumps relations across such reaction surfaces
have been derived [76,77].

5. It is anticipated that there will be increased activities in
the use of theG-equation in the description of chemically
reacting turbulent flows, especially when density jump
is accounted for. Many issues related to stretched
flames assume special significance in turbulent flames,
such as self-laminarization through heat release, self-
turbulization through triggering of the various modes of
flamefront instabilities, the ignition, extinction, and re-
ignition criteria and processes, the formation of islands of
unburnt mixtures through flame folding, and the concen-
tration stratification within turbulent eddies and how it
affects the oxidative and pollutant chemistry.
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